首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在长期荷载的作用下,徐变会对桥梁钢管混凝土的承载力产生一定的影响。为了研究这种影响效应的规律,采用了弹性老化理论和继效流动理论计算了钢管混凝土的徐变效应,通过数值模拟研究了徐变效应下不同的物理参数对钢管混凝土承载力的影响,最终得出了徐变效应下混凝土极限承载力的影响系数的变化规律。  相似文献   

2.
本文介绍了混凝土的变形分类,以及混凝土徐变的成因、徐变的时间过程及影响因素、徐变的约束和徐变对结构的影响;对徐变理论及徐变系数的计算方法进行了分析比较。通过计算实例对我国《公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ023-85)》采用的1978年((CEB-FIP模式规范》的徐变系数计算建议公式、《公路钢筋混凝土及预应力混凝土桥涵设计规范(JTGD62-2004)》采用的1990年((CEB-FIP模式规范》的徐变系数计算建议公式以及ACI-209模式进行了分析、比较并给出了它们之间的差异。  相似文献   

3.
为了精确计算徐变的大小,为混凝土结构设计及计算提供依据,采用CEB-FIP90、ACI209、GL-2000模型计算构件理论厚度修正前后的徐变值,构件理论厚度修正后徐变值有变小的趋势,并依据计算结果对现行《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG3362—2018关于徐变计算的构件理论厚度进行修正。研究了混凝土徐变与配筋率之间的关系,推导配筋率对混凝土构件徐变影响的公式,为了方便工程参照,将公式简化为徐变系数修正表格。徐变发展符合Boltzman叠加原理是目前学术界认可的结论,采用规范方法计算后发现,加载期间荷载变化产生的徐变,采用不同的叠加模式算得的结果有很大差异。  相似文献   

4.
结合实际工程开展了高标号混凝土徐变试验研究,通过现场试验与理论分析,观测掌握混凝土梁的徐变特征及变化规律.以C50混凝土梁为主要研究对象,进行了应力应变测量、变形测量,并通过计算绘制了徐变系数-加载龄期曲线,将计算值和理论值进行对比分析,提出了理论计算值及实测值之间存在差异的几点原因.  相似文献   

5.
为准确预测实际工程结构混凝土徐变的发展规律,在反映恒温、恒湿条件下混凝土徐变性能的基准徐变系数基础上,引入温度、湿度徐变系数,建立了预测实际环境温、湿度条件下混凝土徐变的组合徐变模型.借鉴徐变计算理论,提出了由环境温度变化引起的混凝土附加徐变的实用计算方法.研究结果表明:自然环境中随时间变化的温、湿度导致现行徐变模型的预测结果与实际的徐变变形存在显著差异,其引起的混凝土附加徐变随季节更替而产生周期性增减交替变化;组合徐变模型给出的结果与试验结果最大相对偏差为6%,与试验结果最为接近的现行徐变模型相比,减小了7%.   相似文献   

6.
基于合理的材料本构关系模型,采用有限元法对长期荷载作用下钢管混凝土柱的变形-时间关系曲线进行了计算,并在此基础上对长期荷载作用下钢管混凝土中核心混凝土的徐变系数终值进行了拟合和分析.分析结果表明:在长期荷载作用下,钢管混凝土中核心混凝土的徐变系数终值要明显小于素混凝土;采用0.9作为钢管内核心混凝土的徐变系数终值是合理且偏于安全的.  相似文献   

7.
采用推出试验和有限元方法研究了采用不同剪力连接件的钢-混凝土组合试件的界面长期滑移和应变发展过程; 参考Eurocode 4中推出试验标准试件, 设计了2组试件用于长期推出试验; 分别采用栓钉和PBL作为剪力连接件, 采用螺杆施加长期荷载, 测试了长期加载过程中的界面滑移、混凝土应变和钢梁应变; 同步加载测试了150 mm×150 mm×300 mm的混凝土试块的长期变形, 并以此变形计算混凝土徐变系数; 对比了徐变模型对计算结果的影响, 并讨论了不同混凝土徐变模拟方法。研究结果表明: 界面滑移和混凝土应变在加载初期增长较快, 加载120 d后达到稳定状态; 栓钉试件和PBL试件的最大界面滑移分别为0.162和0.068 mm, 最大值均位于界面底部; 栓钉试件和PBL试件的混凝土最大应变分别为7.30×10-5和1.34×10-4, 最大值均位于混凝土板底部; 钢梁应变在整个试验过程中基本保持稳定, 未出现明显的应力重分布, 栓钉试件和PBL试件的钢梁最大应变分别为3.7×10-5和6.5×10-5, 最大值均位于钢梁顶部; 混凝土徐变是影响钢-混凝土组合试件长期性能的主要因素, 不同混凝土徐变模型计算所得混凝土徐变系数与测试值的偏差为60%~140%, 说明混凝土徐变模型对有限元结果影响显著; 采用指数函数拟合混凝土徐变系数测试结果的拟合误差为2.4%, CEB-FIP90模型计算所得混凝土徐变系数在加载后期与测试值的误差为3.71%, 建议无法实测时可采用CEB-FIP90模型计算混凝土徐变系数。   相似文献   

8.
分析了大流动性混凝土试块收缩变形测量数据,推导出混凝土实际收缩应变量,在此基础上,对预应力混凝土简以梁变形测试数据进行分析,推导出混凝实际徐变系数,并得到适合工程实际施工条件的混凝土徐变系数计算公式。  相似文献   

9.
结合BP-KX模型徐变思想,给出了从混凝土短期试验值推算相应素混凝土在该桥梁工作环境下长期徐变系数的方法,通过对短期试验数据的线性回归得出桥梁素混凝土徐变系数的BP-KX模型修正公式。回归分析结果及试验数据与各国规范预测模型比较表明,回归曲线预测理论值与实测值吻合良好。  相似文献   

10.
混凝土的收缩徐变会引起混凝土连续梁桥不断上拱或下挠。当前国内在建高速铁路中许多混凝土连续梁桥将采用无碴轨道,其可调性很小,必须控制铺轨后的徐变变形(后期徐变变形)。对几种常用规范的混凝土徐变系数影响因素、计算公式进行了对比研究,并以武广客运专线上一座(70+125+70)m混凝土连续梁桥为例,模拟整个施工过程按几个常用规范对该桥进行对比分析计算,研究了混凝土的收缩徐变对桥梁变形和截面应力的影响。计算结果显示,混凝土的收缩徐变引起的桥梁后期徐变变形不可忽视;根据不同规范计算得出的桥梁后期徐变变形差别较大。  相似文献   

11.
为了分析混凝土徐变对箱梁剪力滞效应的影响,针对逐跨施工连续梁桥,根据铁路桥涵混凝土设计规范要求,考虑混凝土滞后弹性变形和各跨加载龄期的不同,采用有效弹性模量法计算结构徐变次内力,应用能量变分法分析徐变对箱梁剪力滞效应的影响.结果表明:对于逐跨施工的两跨连续梁,徐变增大了负弯矩区的截面应力,减小了跨中正弯矩区的截面应力,同时徐变增大了梁轴向的剪力滞系数,使剪力滞效应更加明显.  相似文献   

12.
方钢管混凝土轴心受压构件的徐变分析   总被引:2,自引:0,他引:2  
基于混凝土徐变的继效流动理论,结合方钢管混凝土轴心受压构件的受力特点,推导出方钢管混凝土轴心受压构件徐变的计算公式。此徐变计算公式既考虑了钢管混凝土轴心受压构件徐变的特点,又能反应出不同因素对构件徐变的影响。应用这些公式,通过迭代计算得到的钢管混凝土轴心受压构件的徐变,与试验数据符合较好。  相似文献   

13.
采用不同规范对徐变系数的规定,根据按龄期调整的有效弹性模量法编制了计算混凝土徐变影响的分析程序,并将计算结果与实测值进行了比较,得出一些有意义的结论。  相似文献   

14.
预应力混凝土桥梁组合结构中,混凝土自身的徐变效应会对桥梁结构的可靠性产生重要影响。选择上海某特大桥作为研究对象,采用三分点加载方式在梁上加载10KN荷载,构建了网格划分后的混凝土T形梁有限元模型。根据徐变模型将徐变系数的计算公式导入到蠕变程序中,经过编译计算得到徐变模型下的时程曲线,实现了对预应力混凝土T形梁的徐变效应分析。结果表明,修改了有限元分析软件中自带的显示蠕变准则之后,文中徐变模型得到的混凝土T形梁徐变效应与实际情况更加贴近。  相似文献   

15.
为了探讨混凝土徐变对钢管混凝土柱轴向荷载作用下长期稳定性的影响,基于能量法和按照龄期调整的有效模量法,应用失稳准则,推导了考虑徐变和屈曲前变形的两端铰接、一端固定一端铰接和悬臂柱3种边界条件下的钢管混凝土柱长期稳定临界力计算公式,研究了该类柱徐变稳定临界力与核心混凝土强度的影响规律,并将规范取值与该临界力进行了对比. 研究结果表明:考虑徐变的钢管混凝土柱稳定临界力与徐变系数有关,相同计算长度但不同边界条件的该类柱徐变稳定临界力一致;核心混凝土强度的提高,会减小徐变对构件稳定临界力的影响;当按现行混凝土结构设计规范对核心混凝土强度等级低于C45的钢管混凝土柱进行设计时,应注意徐变失稳问题;钢管混凝土柱的徐变稳定承载力在前60 d下降明显且占总下降量约80%,在100 d后承载力逐渐趋于稳定.   相似文献   

16.
利用金属蠕变理论推导了混凝土徐变的计算公式。在对ANSYS进行二次开发的基础上,以金属蠕变代替混凝土的徐变,编制了徐变的计算程序,实现了对白果渡嘉陵江大桥成桥30 a的徐变仿真分析,实现方法和得出的结论可供参考。  相似文献   

17.
为研究不确定性对钢管混凝土拱面内徐变稳定承载力的影响,建立了其时变的极限状态函数,并将时间离散-综合法和一次可靠度法相结合,得到了钢管混凝土拱面内稳定可靠指标随时间的变化曲线,以及相应的灵敏度指标。计算结果表明:混凝土徐变引起的钢管混凝土拱面内稳定承载力的退化使得其可靠性显著降低;不同随机变量的灵敏度差异明显,其中钢管外径的影响最大,然后依次是钢的弹性模量、混凝土的弹性模量、钢管壁厚以及混凝土徐变系数;徐变对钢管混凝土拱面内稳定的影响较大,设计时应予以考虑。  相似文献   

18.
针对混凝土结构徐变效应的问题,采用按龄期调整的等效模量方法结合ANSYS有限元商用软件包,将"单元生死"技术引入混凝土结构节段施工过程的徐变分析中,解决了节段施工过程之间数据传输问题,并基于ANSYS参数化设计语言APDL,编制了命令流,将徐变效应分析问题转化为伪弹性分析问题,计算简单。以经典三节段施工连续梁桥为例,采用现行规范《公路钢筋混凝土及预应力混凝土桥涵设计规范》中的徐变系数计算公式,分析了节段连续梁桥徐变以及徐变对连续梁桥内力和变形的变化,并与现有计算结果进行了比较,证实了本文方法的可行性和有效性。  相似文献   

19.
利用金属蠕变理论推导了混凝土徐变的计算公式。在对ANSYS进行二次开发的基础上,以金属蠕变代替混凝土的徐变,编制了徐变的计算程序,实现了对白果渡嘉陵江大桥成桥30 a的徐变仿真分析,实现方法和得出的结论可供参考。  相似文献   

20.
针对预应力混凝土连续刚构桥梁挠度问题,采用室内试验和模型分析混凝土收缩徐变和预应力损失对结构挠度变形的影响。结果表明:混凝土徐变增长会导致桥面纵坡坡度变化,结构应力重分布。混凝土前期徐变系数增长快,持荷40d的徐变系数为1.004,180d时增幅仅为2.988%。桥梁顶板预应力损失对结构挠度变形影响比底板更明显,顶板预应力损失为20%时,运营两年的挠度增幅达67.5%。因此,混凝土结构物受荷加载不宜过早,对结构的挠度进行控制有利于提高桥梁的安全性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号