首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 609 毫秒
1.
公路隧道施工废水处理工艺探讨   总被引:4,自引:1,他引:3  
对现有公路隧道施工废水的特点及废水处理存在的问题进行分析,通过试验提出适用于隧道施工废水处理的工艺和技术。  相似文献   

2.
隧道建设对水环境的不利影响主要表现为施工废水对地表水的影响和隧道涌水对地下水的影响2方面。主要分析施工废水和涌水的来源、水质特征以及对地表水和地下水的不利影响,在此基础上,提出避免或减轻不利影响的防治对策与措施。  相似文献   

3.
我国盾构法施工的过江交通隧道越来越多,其废水排水系统越来越受重视。以南京地铁3、10号线地铁过江隧道,纬三路、纬七路市政道路过江隧道为调研对象,主要从废水来源、废水泵站的排水能力、提升方案和泵房布置等方面进行比较与分析,对2类隧道共有的爆管问题及控制措施进行分析与探讨,形成调研结论如下: 为使废水排水系统达到安全可靠、经济高效的设计目标,首先应对废水排水系统的排水能力进行准确定位; 其次应根据隧道长度和埋深等实际情况,选择合理可行的提升方案,同时必须考虑隧道内的消防管道爆管控制,以防事故废水对隧道安全造成影响; 最后应结合隧道断面,合理布置泵房,在满足安全运行的条件下,方便设备的日常检修维护。  相似文献   

4.
谷世平  庄燕珍  王培文 《公路》2022,(4):396-400
随着我国公路和隧道项目逐渐增多,隧道开挖对于周围水环境将造成一定的影响。依托莆炎高速公路三明区段文笔山1号和2号隧道项目,对于穿越水源保护区段施工所产生的废水进行水质及影响分析,并提出防治措施,旨在减少隧道施工建设对周围水环境造成的不利影响。  相似文献   

5.
介绍一种新型施工废水双联处理设备。隧道施工中,施工废水经该设备处理后,出水各项指标均可达到GB8978--1996(污水综合排放标准》中的一级标准,可回用于施工用水、施工机械冲洗水、施工现场清洗水等。实体工程应用表明,该设备具有结构紧凑、流程简洁、操作方便、处理率高、能耗较低的特点,可推广应用。  相似文献   

6.
天目山隧道施工废水特征分析及处理   总被引:1,自引:0,他引:1  
天目山隧道进口段毗邻"新安江—富春江—千岛湖"国家级风景名胜区,为避免隧道施工废水影响当地生态环境和饮水安全,对其特征进行分析,发现废水中悬浮物(SS)和酸碱度(p H)超标,且含有重金属。部分水样中汞(Hg)和镍(Ni)超标(其中Hg的超标频次较高),其他重金属未超标,废水中出现重金属与地质有关。采用"初沉+混凝+沉淀+过滤"工艺处理废水,初沉主要去除大颗粒悬浮物,混凝、沉淀主要去除细颗粒物和重金属。结果表明:处理后的废水各指标均满足排放要求,处理成本为0.51元/m3,经济性较好。  相似文献   

7.
王静华  陈强  田万良 《公路》2024,(1):416-424
隧道施工通风是隧道全过程施工中的重要环节,通过项目前期策划,现设计为无轨施工斜井,计算斜井加隧道主线施工需风量,对风机选型,分阶段施工通风设计,从而对大巴山隧道中间段进行通风设计,保障隧道正常施工。结合特长隧道施工计划,划分为多个阶段,利用不同的通风方式,完善隧道施工通风设备,将隧道施工通风效果最优化,为隧道施工创造良好的施工环境,保障作业人员职业健康,加快施工进度。  相似文献   

8.
为解决采用传统矿山法修建废水泵房存在工期长、风险大等问题以及在机械法联络通道内修建废水泵房作业空间狭小、二次拆除管片风险大等问题,提出采用机械法在盾构隧道内修建废水泵房,明确上部接口和下部封底2项关键技术,并通过数值模拟分析地层水压力对封底混凝土力学性能的影响,最后将该修建技术应用到北京地铁17号线望—勇区间隧道中。研究结果表明: 1)考虑安全系数不小于1.4的情况下,1.0 m厚C30混凝土封底水压可用于不超过0.3 MPa水压的地层条件; 2)封底混凝土与外盾相连接的角部为薄弱部位,其破坏模式呈异形“八”字分布; 3)盾构隧道内采用机械法修建废水泵房能有效保障施工质量,泵房容积大,可有效减少潜水泵的启停次数,降低维修时间和成本,减少对线路运营的影响。  相似文献   

9.
瓦斯隧道施工中如何预测隧道瓦斯及其施工技术是隧道施工的重要保证,本文主要对瓦斯隧道的瓦斯预测方法进行具体介绍,并对冷沙地隧道中的瓦斯含量进行测试,得出冷沙地隧道现阶段属于无突出危险性,为项目正常施工提供保证,另外,对瓦斯隧道研制了专项施工技术,其保证了隧道的安全顺利施工,对以后的瓦斯隧道施工具有参考意义。  相似文献   

10.
矿山法海底隧道废水排水系统设计实践   总被引:1,自引:0,他引:1  
以青岛胶州湾海底隧道工程为依托,对废水系统排水能力的确定、废水提升方案的选择及废水泵房优化设计等方面进行分析,探讨矿山法海底隧道废水排水系统的主要关键技术。主要结论如下: 1)废水排水能力确定的关键在于隧道的结构渗漏水的定量,常规的水下隧道的结构渗漏水量数据不一定适用于海底隧道,必须实际测量后确定; 2)废水提升方案关系到排水的经济性和安全性,核心在于选取安全可靠的水泵类型; 3)废水泵房优化主要从废水池有效容积、结构设计及设备检修等方面进行展开分析; 4)矿山法海底隧道废水排水系统的设计,必须从隧道实际情况出发,综合考虑各类影响因素,以达到安全、经济的设计目标。  相似文献   

11.
汪永兴 《城市道桥与防洪》2020,(4):196-198,I0020
随着我国城市化进程和城市地铁、隧道建设的快速发展,施工过程中会产生大量的废浆和渣土,如果处理不当,会造成环境的严重污染,尤其是在泥水盾构推进过程中,必须要对产生的废浆引起足够的重视,追究废浆的无公害处理和合理利用刻不容缓。针对泥水盾构推进废弃泥浆的环保处理技术研究进行简要的分析,有关经验可供相关专业人员参考。  相似文献   

12.
隧道涌水是铁路施工过程中一种十分常见的地质灾害问题,它对隧道施工进度及隧道施工安全具有直接的影响。针对西南地区某铁路隧道施工期间发生的涌突水事故,结合隧道工程地质及水文地质特征,分析了此次涌突水事故的机理,对隧道继续掘进的涌突水风险进行了预测,同时对后续的施工提出了相应措施,确保隧道的安全掘进。  相似文献   

13.
长大山岭隧道施工过程中不可避免地要通过断层破碎带等不良地质,在断层带地下水发育、导水性较好、补给充分的情况下,极易发生突泥涌水等地质灾害,严重影响施工安全。针对三黎高速公路盘岭隧道工程发生的突水、突泥类破坏模式进行分析,探索未胶结的富水压性断层突水、突泥的特征、模式及地质成因。并对该隧道提出了反向施工、全断面帷幕注浆的施工顺序及方法,有效地控制了隧道施工造成的地下水流失,达到了预期处治效果,保证了施工安全。  相似文献   

14.
向家隧道进出口处在全风化花岗岩中,孔隙和裂隙水均较发育,围岩破碎,地下水补给条件复杂,隧道发生涌突水的可能性非常大[1]。以向家隧道洞口段V级围岩段为例,展开了隧道V级围岩段涌水预测及注浆加固圈研究。研究成果为该隧道施工提供了技术支持。  相似文献   

15.
以广东某在建高速公路隧道工程为例,通过地下水渗流计算分析,确定隧道富水段注浆后岩体渗透系数,最终实现地下水的限量排放。渗流计算采用连续介质模型,主要考虑泄水孔间距、隧道承压水头以及渗透系数的变化,分析孔隙水压力分布、地下水渗流路径,以及渗透系数与渗流量之间的关系,隧道富水段围岩注浆后,其渗透系数理论上不应超过2x10-5m/s控制指标的结论,可为隧道工程的安全施工提供较好的理论指导。  相似文献   

16.
牟松  李建斌 《隧道建设》2008,28(1):56-60
以厦门翔安海底隧道为背景,详细介绍了大陆第一座海底隧道在防排水方面的设计、施工要点,重点介绍了海底隧道防排水施工过程中应注意的问题和关键技术,为今后的海底隧道防排水施工提供了一些可借鉴的经验。  相似文献   

17.
吕燕  邓林 《路基工程》2010,(6):90-92
隧道作为地下建筑物,修建过程中不可避免地穿越不同水文地质体。涌水是隧道施工中常见的地质灾害,同时也是其它很多地质灾害的主要诱因之一,如突水、突泥、翻浆冒泥等等,对隧道工程的涌水量预测具有重要的实际意义。以雅安至泸沽高速公路大相岭泥巴山隧道为研究对象,以地质及水文地质分析原理为基础,建立数值模拟模型,对隧道涌水特征和涌水量进行预测。分析结果:隧道整体涌水量为41 366 m3/d,在主要断层处最大涌水量可达3 100 m3/d,在断层段施工,要提前采取措施严加防范,保证安全。  相似文献   

18.
城市地铁旋喷桩施工技术   总被引:7,自引:1,他引:6       下载免费PDF全文
梁云生 《隧道建设》2007,27(3):84-87
介绍了北京地铁五号线某区间暗挖隧道在富水饱和土体中施工时,在隧道地面两侧施做竖向旋喷桩,形成隔水桩墙,结合洞内施做水平旋喷桩形成隔水围幕,最终达到了“改良地层,控制变形;形成隔离,抑制水患;综合治理,保障安全”的目的。  相似文献   

19.
北京地铁四号线隧道辐射井降水施工实践   总被引:2,自引:0,他引:2       下载免费PDF全文
陈锡云 《路基工程》2010,(5):159-161
在交通复杂、人口密集的城市中心区修建地下隧道,如何降低地下水,是影响施工的关键问题。文中以北京地铁四号线黄庄—中关村区间隧道施工降水为例,从辐射井降水原理着手,介绍了一套占地面积小、降水控制范围大、疏干效果好的施工降水方法。实践证明:竖井采用沉井工艺,水平井采用水力双壁钻杆反循环工艺,可达到快速高效降水的目的,且造价较井点降水节约30%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号