首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纯电动汽车永磁同步电机是影响整车的NVH性能主要激励源之一,通过对驱动电机定子的分析与优化,能有效降低电机谐频激励,减小电机振动,从而提高整车NVH舒适性。文章以一款纯电动车型为例,重点讲述通过测试排查减速能量回收车内啸叫问题,确认驱动电机24阶、48阶激励通过结构和空气传递到车内,引起车内中高频啸叫声,最终优化驱动电机定子绕组得以改善,达到优化车内噪声的目的,为纯电动汽车NVH性能开发和优化提供参考与借鉴。  相似文献   

2.
燃料电池轿车车内噪声传递路径分析研究   总被引:7,自引:0,他引:7  
郭荣  万钢  左曙光 《汽车工程》2007,29(8):635-641
介绍了传递路径分析(TPA)方法,对结构传递和空气传播噪声理论分析和试验方法进行探讨,通过燃料电池轿车怠速工况车内噪声的传递路径试验,测量并计算得到传递函数,结合实际激励进行车内噪声合成,合成结果和原始声音比较接近,结构传递噪声是主要成分,最后通过路径贡献分析识别出主要传递路径。  相似文献   

3.
沈龙  张军  秦宾 《汽车工程》2024,(3):520-525+545
随着电机驱动技术以及空气动力学技术的不断提升,纯电动汽车高速化趋势愈发明显。纯电动汽车高速行驶时,底盘后部空腔引起的低频气动噪声峰值可超过60 dB(A),严重影响驾乘舒适性。以某纯电动汽车高速工况下的低频噪声问题为案例,系统地阐述了低频噪声问题的排查分析及产生机理分析验证过程。首先,分析了高速行驶激励源类型,并通过声学风洞进行激励源分离试验,锁定低频噪声为气动噪声类型;其次,对低频气动噪声形成的潜在机理进行推断,并设计试验进行潜在机理排查分析,确定底盘后部空腔涡声耦合自激振荡是引起低频气动噪声的原因;最后,通过仿真分析、半经验公式计算和实车试验验证了潜在机理,并设计工程化方案解决了该低频噪声问题。这对纯电动汽车高速工况气动噪声问题的分析识别与解决具有重要的工程意义。  相似文献   

4.
车辆在粗糙路面上行驶时,底盘零件的弹性模态与轮胎模态或者车身声腔模态耦合,极易产生100~300 Hz的低频轰鸣,从而降低整车的NVH品质。文章针对这一问题,分析了路面激励到车内噪声的所有传递路径,利用工况传递路径方法分析出对车内低频轰鸣贡献最大的关键路径;通过模态试验找到了路径上的模态原件并测试了路径与车身安装点的动刚度。根据分析结果给出改进方案,并在实车上进行了验证。结果显示,改善后的车内低频轰鸣峰值降低了约9 d B,改善效果良好。  相似文献   

5.
为了消除进气系统带来的车内噪声问题,运用传递路径分析方法,“源-路径-响应”的分析思路,总结了进气系统噪声问题的传递路径,结合某轿车进气系统轰鸣声问题的改进,发现结构传递路径和空气传递路径对该进气轰鸣声均有重要贡献,通过降低空气滤清器安装点橡胶软垫的硬度和加强安装点车身侧支架,可有效降低车内轰鸣声。  相似文献   

6.
针对电动汽车车内高频噪声问题,利用空气声传递路径分析方法,识别驾驶室内噪声问题的主要原因。以驱动电机系统6辐射表面作为点声源,司机内耳噪声作为目标点,建立传递路径分析模型。采用逆矩阵法识别6点声源的空气声载荷,得到各路径对驾驶室内噪声问题的贡献量,为问题的解决提供优化方向。研究表明,空气声传递路径分析能有效应用于电动汽车的车内高频噪声问题的分析。  相似文献   

7.
正针对某款国产SUV开发过程中出现路面激励而引起车内后排乘员噪声的问题,本文利用传递路径分析理论,分析车内振动和噪声产生的关系以及传播路径,建立整车振动与噪声分析模型,借助有限元分析,分析路面激励通过车身结构而引起车内振动与噪声的传递路径,对影响比较大的几条传递路径进行优化,使其达到目标值。最终,通过对样车进行试验,车内后排低频的隆隆声消失,达到了期望的效果。该分析方法对车身及整车的NVH分析与优化提供一定的参考价值。  相似文献   

8.
针对某款乘用车小油门加速过程中车内噪声粗糙感明显的声品质问题,首先对噪声时域数据进行频谱特性分析,得到造成噪声粗糙感明显的原因是车内半阶次声压幅值调制。其次通过传递路径试验分析,确定车内半阶次激励源是发动机半阶次振动,主要传递路径是动力总成悬置。最后通过提高前围隔音量,优化悬置刚度及降低空调管隔振垫硬度,明显降低了车内噪声的半阶次特征,加速声品质得到有效改善。  相似文献   

9.
为了更好地探究车内低频结构噪声,采用有限元法建立某特种车的有限元结构模型、车内声腔模型和声固耦合模型,分析了具有代表性的局部结构模态,车内空气在其固有频率下声压的振动情况以及对比分析耦合模型和结构模型,为找出对车内振动噪声贡献量大的部件提供参考。  相似文献   

10.
在研究汽车车内噪声的过程中,判断低频噪声的主要来源和降低车内低频噪声水平是一个难点。运用声传递向量(ATV)技术,以某轿车为例,建立车内声学空腔边界元模型,对车内低频噪声进行仿真;通过对声传递向量以及声压频响函数的计算,进一步对低频段的噪声贡献量分析,为判断低频噪声的主要来源提供了一种分析方法。选取车内驾驶员右耳畔声压响应的6个峰值点,采用幅值—相位图对场点声压进行模拟,对车身板件声学贡献量进行排序,发现防火墙和前挡风玻璃的结构振动对车内低频噪声的产生可能有重要影响,为进一步的改进提供一定的参考依据。改进设计后,车内低频噪声水平得到一定程度抑制。  相似文献   

11.
某发动机冷却风扇存在明显的阶次噪声,冷却风扇噪声传递到车内主要有空气传递和结构传递两条路径。分析结果表明冷却风扇噪声随着转速的增加而增大,且在不同转速区间内,结构传递和空气传递贡献量不同。文章的研究对冷却风扇的阶次噪声控制具有重要意义。  相似文献   

12.
纯电动汽车在整车NVH性能开发过程中,驱动电机存在8阶啸叫噪声,严重影响整车NVH性能品质。通过整车试验、主观评价及CAE仿真分析手段,验证出空气传播为车内8阶啸叫噪声大的主要路径,锁定驱动电机逆变器壳体共振及电机悬置支架振动是造成8阶啸叫噪声大的关键因素。为有效解决驱动电机8阶啸叫噪声问题,实施电机逆变器壳体结构优化及电机悬置支架安装动力吸振器优化措施,并搭载整车进行试验验证,最终有效解决驱动电机8阶啸叫噪声问题,提升了某纯电动汽车整车NVH性能品质的同时,为后续驱动电机NVH性能开发积累了宝贵经验。  相似文献   

13.
传动系统扭振引起的车内低频轰鸣声,一直是汽车NVH领域的难点和热点问题。针对某型三缸机中型多用途汽车的中油门加速,在1400-2000r/min发动机转速时的车内低频轰鸣声问题,基于半消声室转鼓试验研究,运用相关性分析方法,锁定了传动系扭振为该问题的激励源,并通过传递路径分析,识别了前风挡玻璃与一阶空腔模态的受迫/耦合共振,是导致车内空气压力脉动升高并产生低频轰鸣声的主要原因。通过车身传递路径的优化,降低了车内低频轰鸣声2-4dB(A),显著提升了加速工况的车内声品质,为车内低频轰鸣声问题的优化提供了指导。  相似文献   

14.
电动汽车与传统燃油车辆振动噪声特点存在较大差别,真空泵、水泵、空调压缩机等电辅助系统噪声凸显;某项目纯电动汽车静置车内噪声不大,但制动过程可明显听到真空泵噪声.针对该问题,进行了真空泵支架模态优化,解决支架与真空泵运转的共振;对真空泵隔振橡胶垫进行了调校,使真空泵隔振率及被动侧振动得到优化;对真空管路进行了固定处理及隔振优化,使真空管路传递的结构噪声大大降低.经过以上结构噪声传递路径优化,车内振动噪声水平得到大大降低,真空泵噪声在车内基本无感觉.  相似文献   

15.
通过对燃油汽车和纯电动汽车电磁干扰类型对比,提出燃油汽车和纯电动汽车上车外电磁干扰、车体静电干扰相同,车内电磁干扰不同;对电动汽车的结构分析,提出纯电动汽车的电子元件、电气设备、单片机系统比燃油汽车多,车内电磁干扰源多;通过对防电磁干扰的措施对比,提出纯电动汽车和燃油汽车防电磁干扰的措施种类一致,但数量上纯电动汽车比较多。  相似文献   

16.
对汽车车内噪声的成因进行了阐述,分析了传递路径分析法中激励力和传递函数的获取方法以及系统与子结构的传递关系;通过各噪声的合成分析,确定了传递途径上对车内噪声起主导作用的环节,以指导工程分析和设计。  相似文献   

17.
某车型怠速时因拍频产生的嗡嗡声影响到车内声品质和舒适性,本文运用OPTA从源-路径-响应的技术路线分析车内怠速10阶噪声,采用模态试验方法验证OPTA分析结果。通过结构分离和结构优化,验证优化方案对车内10阶噪声的影响。试验结果表明,排气系统结构噪声对车内10阶嗓声起主要贡献,通过排气吊耳和车身脱开及更改排气吊耳硬度(刚度)可降低车内怠速10阶噪声,车内嗡嗡声改善明显。  相似文献   

18.
以某自主品牌乘用车怠速车内噪声为研究对象,通过动力总成悬置系统隔振率试验、车内噪声分离试验等方法定量确定车内各噪声源的贡献量大小,并从排气管口噪声源控制、悬置垫结构传递路径控制及防火墙隔音垫空气传递路径控制等方面分别提出怠速车内噪声控制的改进措施。采取改进措施后的试验样车怠速工况下车内噪声降低3.5dB(A),达到国内合资品牌水平。  相似文献   

19.
为降低某越野车的车内噪声,运用板件声辐射理论,从激励源、传递路径和响应等3个方面对噪声产生机理进行了分析,通过车身模态和板件平均振动传递函数分析,提出了降低后桥高度、轮边减速器改用高精度斜齿轮、增加立柱和敷贴阻尼片等降噪措施,有效消减了车内某些中高频噪声。最后通过实车试验验证,改进后的车内噪声达到目标值要求。  相似文献   

20.
传统的频域传递路径分析方法容易获取振动信号的频谱特性,但难以与车内主观感受相结合,导致分析效率低和误判的缺陷。为了解决此问题,研究了基于时域传递路径分析的方法与车内噪声品质的相关性。利用声品质主观评价和客观数据的回归方程建立了声品质评审模型,设定了目标参数,再利用时域传递路径分析的方法得到了可靠的传递路径的分析模型。最终通过对动力总成噪声的时域特性进行分析与计算,得到了不同激励源的车内贡献量,对传递路径进行优化后,降低了5 dB(A)的发动机2阶噪声声压级,提高了车内声品质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号