首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
船舶尾气排放硫氧化物和氮氧化物是大气污染主要来源之一,采用湿法脱硫技术是减少硫氧化物排放的有效途径。但湿法脱硫后产生的洗涤水含有多种有害物质,其中多环芳烃为主要污染物之一,国际海事组织规定其含量不得超过2250 μg/L。本研究以萘为多环芳烃代表物,采用低温等离子体技术处理船舶尾气脱硫洗涤水,分别考察低温等离子体工艺参数(放电功率、进气量)和处理过程特征参数(温度、pH、水中阴离子)对萘去除率的影响。结果表明,最佳氧气进气量和放电功率分别为3 L/min和132 W,该条件下萘去除率随温度升高先增大后降低;pH升高有利于萘的降解;水中SO42-、SO32-、NO3-、NO2-、HCO3-对萘的降解有不同程度的影响,其中HCO3-的影响最为显著。  相似文献   

2.
胡明华 《船舶工程》2016,38(12):49-51
本文通过在普通快速镍镀液中添加纳米Al2O3颗粒,制备出了Al2O3复合电刷镀层。制备出的复合镀层表面粗糙度普遍低于普通电刷镀层,显微硬度明显高于普通镀层,在纳米颗粒浓度为15g/L时,制备出的复合镀层的综合性能最好。  相似文献   

3.
沈雁  王红星 《船舶工程》2016,38(7):89-93
为了使海洋平台铝合金钻探管具有优异的耐腐蚀性能,试验采用微弧氧化技术,在海洋平台钻探管用2A12铝合金表面制备氧化铝陶瓷膜。本试验研究了纳米颗粒添加量对微弧氧化膜的微观形貌、组织结构和耐腐蚀性的影响。试验得出:MoS2纳米颗粒添加量对微弧氧化膜的制备影响较大,随着MoS2纳米颗粒添加量的增加,微弧氧化膜的厚度有增大的趋势,孔径先增大后减小,膜表面越来越致密光滑;随着MoS2纳米颗粒添加量的增加,微弧氧化膜的耐腐蚀性能提高,当MoS2纳米颗粒添加量由0.5g/L增加到2g/L时,腐蚀速率由0.00032g.(dm2)-1.h-1降低至0.00024g.(dm2)-1.h-1。  相似文献   

4.
基于过氧化氢同碘化钾反应后的溶液呈黄色,碘离子含量明显低于加入碘化钾的含量,体系的pH值随过氧化氢含量的增加而增加的事实,推断碘化钾-过氧化氢催化反应体系有副反应发生.副反应生成了碘,使得体系的颜色呈黄色,吸收峰红移,碘的浓度随过氧化氢的含量增加而增大,副反应生成了碱性物质,而使体系的pH值增加,副反应消耗了碘离子.  相似文献   

5.
基于计算流体力学方法,结合滑移网格技术与动网格技术,实现了带自由面的双桨双舵舰船的直航与斜拖的数值模拟试验,并根据数值模拟所得到的若干数据求取了桨的实效伴流系数ωp、流入舵的纵向有效速度uR与有效冲角αR、操舵诱导横向力关于舵力的修正因子αH及其距舰船重心的无量纲距离x"H等船、舵、桨相互干扰系数。数值模拟结果与权威水池试验结果相比对,吻合良好。  相似文献   

6.
根据船舶具体情况,利用 EXCEL,输入管路及附件的基本参数,生成压载水溢流置换的管路系统特性曲线图,从而了解溢流置换时各舱室压力、溢流流量和需要的时间,为编制该轮<船舶压载水管理计划>提供数据.  相似文献   

7.
首先介绍了国际海事组织(IMO)颁布的<国际船舶压载水及沉淀物控制与管理公约>的基本内容生效日期及性能标准,其次介绍了现有的主要船舶压载水处理方法,并对其优缺点进行了分析:最后给出了目前符合国际海事组织压载水排放标准的压载水处理系统的基本组成与工作原理,为2009年以后设计建造的新船以及2016年底前全部现有船舶的改装...  相似文献   

8.
张建国 《世界海运》2013,36(1):44-45
<正>一、概述(1)压载水管理计划通常是由船级社批准的适用于某一特定船舶的关于更换压载水的程序的指导性文件。(2)在执行压载水管理计划的过程中,通常习惯做法是:船舶大副负责压载水的检查工作和监督排注或更换压载水的过程,保持及填写《压载水报告表》;水手长或木匠执行压载水相关工作及测量水位;机舱值班人员负责泵操作及系统维护检查。(3)除了要按港口国要求进行压载水更换、报  相似文献   

9.
<正>国际海事组织(以下简称IMO)对船舶压载水问题高度重视,并于2004年通过了《国际船舶压载水和沉积物控制与管理公约》。我国作为世界航运大国、IMOA类理事国,也在全力推进这项工作。本文从船舶压载水的作用、对海洋的危害、处理办法以及如何有效控制船舶压载水,提升经济效益等方面进行分析,并以"零压载水"的理念加强对船舶压载水的管理和控制提出建议,希望能起到抛砖引玉的效果。  相似文献   

10.
针对国际海事组织(IMO)日益严格的SO2排放限值,开展适用于船舶废气的镁基湿法脱硫试验研究.基于中试试验平台,以氢氧化镁浆液作为吸收剂,研究影响脱硫效率的关键工艺参数,包括液气比、浆液pH值、烟气流速、入口 SO2浓度、浆液温度等.结果表明,在所研究的工况范围内,加装传质构件的喷淋塔脱硫效率显著优于未加装前,可达98.24%,提高2个百分点;脱硫效率随液气比、浆液pH值和烟气流速的增大而升高,高至98.24%,随入口 SO2浓度和浆液温度的增大而降低,低至95.35%.研究结果可为镁基湿法脱硫技术在船舶上的应用提供支撑.  相似文献   

11.
A coupled carbonate system–marine ecosystem–hydrodynamic model is used to simulate the temporal and spatial variability in pH across the southern North Sea as it relates to the environmental and biological processes affecting CO2, namely, photosynthesis and respiration, riverine boundary conditions and atmospheric CO2 concentrations. Annual pH ranges are found to vary from < 0.2 in areas of low biological activity to > 1.0 in areas influenced by riverine signals, consistent with observations and previous studies. It is shown that benthic, as well as pelagic, activity is an important factor in this variability. The acidification of the region due to increased fluxes of atmospheric CO2 into the marine system is calculated and shown to exceed, on average, 0.1 pH units over the next 50 years and result in a total acidification of 0.5 pH units below pre-industrial levels at atmospheric CO2 concentrations of 1000 ppm. The potential for measurable changes in biogeochemistry are demonstrated by simulating the observed inhibition of pelagic nitrification with decreasing pH. However, we conclude that there is a lack of knowledge of how acidification might affect the complex interaction of processes that govern marine biogeochemical cycles and a consequent need for further research and observations.  相似文献   

12.
A new method to calculate the anthropogenic CO2 (ΔDICant) within the water column of the North Atlantic Ocean is presented. The method exploits the equilibrium chemistry of the carbonate system with reference to temperature, salinity and the partial pressure of atmospheric CO2 (pCO2,atm). ΔDICant is calculated with reference to the ventilation ages of water masses derived from tracer data and to the time history of pCO2,atm. The method is applied to data recorded during the WOCE program on the WHP A1/E transect in the North Atlantic Ocean, where we characterise six key water masses by their relationships of dissolved inorganic carbon (DIC) and apparent oxygen utilisation (AOU). The error in determining ΔDICant is reduced significantly by minimising the number of values referred to, especially by avoiding any use of remineralisation ratios of particulate organic matter. The distribution of ΔDICant shows highest values of up to 45 μmol kg−1 in the surface waters falling to 28–33 μmol kg−1 in the Irminger Sea west of the Mid-Atlantic Ridge. The eastern basin is imprinted by older water masses revealing decreasing values down to 10 μmol kg−1 ΔDICant in the Antarctic Bottom Water. These findings indicate the penetration of the whole water column of the North Atlantic Ocean by anthropogenic CO2.  相似文献   

13.
During 2004, 10 samplings were performed in order to measure dissolved methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in the surface waters of Río San Pedro, a tidal creek in the salt marsh area of the Bay of Cádiz (SW Spain). The inner partvs of the creek is affected by the inputs coming from an intensive fish farm and the drainage of an extensive salt marsh area.Dissolved CH4, CO2 and N2O concentrations ranged from 11 to 88 nM, 36 to 108 μM and 14 to 50 nM, respectively. Surface waters were in all cases oversaturated with respect to the atmosphere, reaching values of up to 5000% for CH4, 1240% for CO2 and 840% for N2O. Dissolved CH4, CO2 and N2O showed a significant tidal and seasonal variability. Over a tidal cycle, concentrations were always highest during low tide, which points to the influence of the inputs from the fish farm effluent and the drainage of the adjacent salt marsh area, as well as in situ production within the system. Dissolved CH4, CO2 and N2O seasonal patterns were similar and showed maximum concentrations in summer conditions. Using four different parameterizations to calculate the gas transfer coefficients [Liss, P.S. and Merlivat, L., 1986. Air-sea exchange rates: introduction and synthesis. In P. Buat-Ménard (Ed.), The Role of Air-Sea Exchanges in Geochemical Cycling. Reidel, Dordrecht, The Netherlands, p. 113–127.; Clark, J.F., Schlosser, P., Simpson, H.J., Stute, M., Wanninkhof, R., and Ho, D.T., 1995. Relationship between gas transfer velocities and wind speeds in the tidal Hudson River determined by the dual tracer technique. In: B. Jähne and E. Monahan (Eds.), Air-Water Gas Transfer: AEON Verlag and Studio, Hanau, Germany, pp. 785–800.; Carini, S., Weston, N., Hopkinson, G., Tucker, J., Giblin, A. and Vallino, J., 1996. Gas exchanges rates in the Parker River estuary, Massachusetts. Biol. Bull., 191: 333–334.; Kremer, J.N., Reischauer, A. and D'Avanzo, C., 2003. Estuary-specific variation in the air-water gas exchange coefficient for oxygen. Estuaries, 26: 829–836.], the averaged air–water fluxes of CH4, CO2 and N2O from the creek to the atmosphere ranged between 34 and 150 μmol CH4 m− 2 day− 1, 73 and 177 mmol CO2 m− 2 day− 1 and 24 and 62 μmol N2O m−2 day−1, respectively.  相似文献   

14.
CO2 partial pressure in surface water was measured in the Northeast Atlantic and in the Hebride Shelf/North Sea area during a cruise with R.V. Poseidon in June 1991. A mean pCO2 of 303 μatm was found in the Atlantic between 50°N and 60°N. For an atmospheric CO2 content of 357.5 ppm(v) this corresponds to a partial pressure difference of −55 μatm. This supports the view that the subarctic Atlantic is a significant sink within the CO2 cycle between the ocean and the atmosphere. A comparison of our measurements with other data reveals that the pCO2 distribution changes significantly during May/June. This explained by seasonal warming, CO2 exchange with the atmosphere and biomass production. The contribution by each of these processes to the seasonal variations is calculated. It was found that during a plankton bloom the production of biomass is the dominating factor and may lower seawater pCO2 by almost 100 μatm. The shelf areas are charactrized by strong pCO2 gradients which are explained by water exchange with the Atlantic, temperature effects and biomass production.  相似文献   

15.
Continuous measurements of the surface water CO2 partial pressure (pCO2) and the chlorophyll a fluorescence were performed in the Baltic Sea using a fully automated measurement system deployed on a cargo ship. The ship commuted regularly at two day intervals between the Mecklenburg Bight (Luebeck) and the Gulf of Finland (Helsinki). The pCO2 data collected during June 2003 and September 2004 were used to identify biological production events such as the spring bloom and the midsummer cyanobacteria bloom in five different sub-regions. To quantify the net biomass production, the decrease of the total CO2, NCT (normalized to a uniform alkalinity), during the production periods was calculated using the pCO2, temperature and salinity records and the mean alkalinity. Taking into account the CO2 air/sea exchange and the formation of dissolved organic carbon, a simple mass balance yielded the net production of particulate organic carbon which represents the total biomass. The chlorophyll a concentrations obtained from the fluorescence data showed peaks that in most cases coincided with the production maxima and thus supported the interpretation of the pCO2 data. The production during both the spring bloom (2004) and the midsummer nitrogen fixation period (2003) increased by a factor of about three from the southwest to the northeast. For the spring bloom our estimates were significantly higher than those based on the winter nutrient supply and Redfield C / N and C / P ratios. This indicated the existence of additional nutrient sources such as dissolved organic nitrogen, early nitrogen fixation and preferential P mineralization. Midsummer NCT minima were observed only in 2003 and used to quantify the nitrogen fixation activity and to characterize its interannual variability.  相似文献   

16.
We have measured simultaneously the methane (CH4) and carbon dioxide (CO2) surface concentrations and water–air fluxes by floating chambers (FC) in the Petit-Saut Reservoir (French Guiana) and its tidal river (Sinnamary River) downstream of the dam, during the two field experiments in wet (May 2003) and dry season (December 2003). The eddy covariance (EC) technique was also used for CO2 fluxes on the lake. The comparison of fluxes obtained by FC and EC showed little discrepancies mainly due to differences in measurements durations which resulted in different average wind speeds. When comparing the gas transfer velocity (k600) for a given wind speed, both methods gave similar results. On the lake and excluding rainy events, we obtained an exponential relationship between k600 and U10, with a significant intercept at 1.7 cm h− 1, probably due to thermal effects. Gas transfer velocity was also positively related to rainfall rates reaching 26.5 cm h−1 for a rainfall rate of 36 mm h− 1. During a 24-h experiment in dry season, rainfall accounted for as much as 25% of the k600. In the river downstream of the dam, k600 values were 3 to 4 times higher than on the lake, and followed a linear relationship with U10.  相似文献   

17.
Ships of opportunity have been used to investigate ocean–atmosphere CO2 fluxes in the English Channel and Southern Bight of the North Sea. Continuous underway measurements of the fugacity of seawater carbon dioxide (fCO2sw), chlorophyll, temperature and salinity have been performed along 26 transects during the spring and autumn periods. The spatial fCO2sw distribution along the Channel and Southern Bight is modulated by the photosynthetic activity, temperature changes and water mixing between inputs from the North Atlantic Ocean and riverine discharges. The seasonal variability of fCO2sw is assessed and discussed in terms of the biology and temperature effects, these having similar impacts. The variation of fCO2sw shows similar interannual patterns, with lower values in spring. The annual average of air–sea CO2 fluxes places the English Channel as neutral area of CO2 uptake. The spring and autumn data allow differentiating between distal and proximal continental areas. The Southern Bight shows a tendency towards net CO2 uptake on the distal continental shelf, whereas the Scheldt and Thames Plumes show a CO2 source behaviour on the proximal continental shelves.  相似文献   

18.
Long-term observations of the marine atmospheric boundary layer were performed by an eddy correlation system, which was set-up on a platform in the Baltic Sea. In this experiment the three-dimensional wind vector and the turbulent fluxes of momentum, sensible and latent heat and CO2 were measured for one and a half years. Simultaneously the CO2 partial pressure pCO2 in surface water was measured by a submersible autonomous moored instrument for CO2 at the platform in 7-m depth. The high-resolution eddy correlation measurements of the atmospheric CO2 flux FCO2, together with the measurements of the CO2 partial pressure differences between air and sea ΔpCO2 led to a long-term data set which provided the possibility to investigate the parameterization of the CO2 transfer velocity k as a function of 10-m wind speed u in a statistical manner. From half-hour mean CO2 fluxes and CO2 partial pressure differences, k was calculated using k = FCO2 / (K0ΔpCO2), with K0 the CO2 solubility. The half-hour mean data points, used for the determination of the ku parameterization, show large scatter. However, assuming a linear, quadratic dependency the analysis yields: k660 = 0.365u2 + 0.46u (k at 20 °C and salinity 35 psu) with a correlation coefficient of r2 = 0.81. The large scatter indicates that the kinetics of the air–sea CO2 transfer velocity is not only a function of the wind speed alone, but might also be controlled by other environmental parameters and mechanisms, such as sea state and surface coverage with surfactants.  相似文献   

19.
Successful co-deposition of fine particulate matter within an Electroless Nickel-Phosphorous (ENi-P) matrix is dependent on various factors like bath composition, particle compatibility with metallic matrix, bath reactivity (pH), particle size and their distribution. ENi-P deposits incorporating Al2O3/Alumina in a disperse phase have varied effects on properties and attributes like surface roughness (Ra), microhardness, wear resistance, corrosion resistance and surface morphology of the deposits obtained. This paper experimentally investigates the effect of alumina (1.55 g/L) on Ra, microhardness, surface morphology, deposition rate, wettability, wear resistance and corrosion resistance of ENi-P-Al2O3 composite deposits on mild steel substrates at bath pH 5, 7 and 9. Study reveals that optimum deposit parameters and deposition rates are achieved with bath pH. However, not much study has been undertaken concerning composite deposits obtained from higher bath pH or basic bath. This is attributable to the fact that at higher bath pH or alkaline baths, the bath gets unstable and eventually degrades or decomposes, thereby resulting in sub optimal or poor deposition. Hence, experimental investigations carried out by preparing suitable baths, operating under optimum conditions, and enabling successful composite deposition in acidic and alkaline baths have revealed that there is a significant improvement in the above mentioned properties of the as-deposited composite deposits, as the pH is increased from pH 5 to pH 9. This aspect can therefore be advantageously utilized for preparing various marine components like fasteners, nuts, bolts, washers, pipes, cables, components having relative motion etc.  相似文献   

20.
Atmospheric molar fraction of CO2 (xCO2atm) measurements obtained on board of ships of opportunity are used to parameterize the seasonal cycle of atmospheric xCO2 (xCO2atm) in three regions of the eastern North Atlantic (Galician and French offshore and Bay of Biscay). Three selection criteria are established to eliminate spurious values and identify xCO2atm data representative of atmospheric background values. The filtered data set is fitted to seasonal curve, consisting of an annual trend plus a seasonal cycle. Although the fitted curves are consistent with the seasonal evolution of xCO2atm data series from land meteorological stations, only ship-board measurements can report the presence of winter xCO2atm minimum on Bay of Biscay. Weekly air–sea CO2 flux differences (mmol C·m− 2 day− 1) produced by the several options of xCO2atm usually used (ship-board measurements, data from land meteorological stations and annually averaged values) were calculated in Bay of Biscay throughout 2003. Flux error using fitted seasonal curve relative to on board measurements was minimal, whereas land stations and annual means yielded random (− 0.2 ± 0.3 mmol C·m− 2·day− 1) and systematic (− 0.1 ± 0.4 mmol C·m− 2 day− 1), respectively. The effect of different available sources of sea level pressure, wind speed and transfer velocity were also evaluated. Wind speed and transfer velocity parameters are found as the most critical choice in the estimate of CO2 fluxes reaching a flux uncertainty of 7 mmol C·m− 2·day− 1 during springtime. The atmospheric pressure shows a notable relative effect during summertime although its influence is quantitatively slight on annual scale (0.3 ± 0.2 mmol C·m− 2·day− 1). All results confirms the role of the Bay of Biscay as CO2 sink for the 2003 with an annual mean CO2 flux around − 5 ± 5 mmol C m− 2 day− 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号