首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为了避免立管发生涡激共振,识别影响立管固有振动频率的因素,保障管道安全稳定运行,利用ANSYS有限元分析软件建立有限元模型,对天然气立管进行模态分析,并分析了立管高度、风速、管径和管道两端约束方式4种影响因素对天然气立管固有频率的影响规律。得到了如下结论:随着立管高度的增加,立管的固有频率减小;风载荷大小对立管的固有频率没有影响;随着管径增大,立管的固有频率也增大;立管的两端要尽可能使用全约束条件。  相似文献   

2.
液体输送管道固液耦合振动的有限元分析   总被引:4,自引:2,他引:2  
针对在工程中常见的液体输送管道 ,根据Hamilton原理 ,使用有限元法推导了管道的固液耦合振动方程。通过求解振动方程组的特征值得到管道的固有频率及临界流速 ,并讨论了液体的流速、压力变化对管道固有频率的影响。计算结果表明 ,管道的固有频率随流速的增大而降低 ,当流速等于或大于临界流速时 ,管道将发生静力失稳。  相似文献   

3.
输气站场管道异常振动会造成管系疲劳失效,给安全生产造成巨大的隐患。文中从振源方面将管道振动分为机械导致的振动和流体导致的振动,并对其进行原因分析。研究表明:机械导致的振动通常为转动设备本体设计不合理或安装质量问题导致的振动传递给管道;流体导致的振动通常是管内气流脉动引起的气柱共振或机械共振。利用研究结果对某输气站场管道振动原因进行分析,发现是气流脉动产生的机械共振所导致,建议在设计天然气站场工艺时要尽量避免流场的剧烈、频繁变化,以减少或避免流致振动。  相似文献   

4.
压力管道振动分析   总被引:1,自引:0,他引:1  
通过对压力管道系统振动数学模型及振动方程的理论分析研究,得出要改变其管线系统的振动特性,可从激振力和质量、阻尼、刚度等方面考虑的结论。分析了引起管道振动的各方面的具体原因,并提出了相应的消除压力管道各种振动的有效措施,为在设计、安装压力管路时尽量减小振动影响提供了参考。  相似文献   

5.
针对工程中常见的悬空输油管道,考虑地震载荷的作用和输送液体与管道的相互作用,建立数学模型,用Hamilton原理和有限元法推导了管道的固液耦合振动方程。采用Newmark逐步积分法直接求解方程,在不同流速和不同边界条件下,对管道的地震动力响应进行计算。结果表明:管道的固有频率随流速的增大而降低,当固有频率降低至地震频率时,结构发生共振;当流速达到临界流速时,位移随时间按指数增大,固液耦合作用不能忽略。  相似文献   

6.
目前,在阀室对干线及旁通管路球阀进行排污作业时,由于阀室相对密闭,泄放的天然气极易在阀室内聚集,容易引发火灾爆炸等安全事故。通过研究分析,设计出一套阀室球阀排污外排装置。整个装置主要由转接头、泄放管路、阻火器以及配重块部分组成。文中介绍了该装置的特点、使用方法以及应用效果。该装置可以使排污操作时将阀腔内的气体泄放至阀室室外,避免在排污作业时造成阀室内天然气聚集,同时该装置兼具球阀内漏测试功能。此套装置改善了阀室球阀排污时的作业环境。  相似文献   

7.
针对常见的管道振动情况,通过分析得出其主要原因是管系结构固有频率与激发主频率相近而造成共振.管道系统振动的原因主要有两方面:介质对管道系统产生的振动力,即激发信号,如分支节点部位产生的振动力;对激发信号的响应,其响应除了和激发信号的波形有关外,还和管道系统本身的特征,即系统的刚度、质量及其配置等情况有关.通过理论计算得...  相似文献   

8.
共振对管道危害极大,为了防止共振,需要对管道的固有频率和振幅进行研究。管道的约束和长度是影响管道固有频率和振幅的2个重要因素,变换管道约束和长度能有效改变管道固有频率和振幅的大小。采用ANSYS软件建立管道的有限元模型并对其进行模态分析,得到前三阶固有频率和振幅。通过改变管道约束和长度,得出管道振动规律:约束不同时管道的固有频率差别很大;其他条件相同时,管道固有频率随着管道长度的增加而减小;约束方式对振幅的大小有影响,一端固定时振幅最大;其他条件相同时,振幅的大小随着长度的增加而减小。  相似文献   

9.
运行中的顺序输送管道沿线压力的变化主要是由管路特性的变化和不同密度油品在管道中交替产生的,管道的落差越大,对压力的影响越明显。由于靖成输油管道具有落差大、翻越点多、地形复杂及进出油点多等特点,所以在成品油顺序输送时,随着混油段位置的变化,其管输量、各站进出口压力等均在变化。针对靖咸成品油顺序输送管道通过大落差地段的压力变化进行研究,对不同油品在大落差管道中交替时压力变化规律做了定性和定量的分析,并提出了危险点的压力控制措施。  相似文献   

10.
文中概述了目前国内外天然气长输管道应急封堵技术发展的现状,并通过理论分析与工程实践,对常用的4种管道应急封堵技术从技术原理、施工工艺、施工特点等方面进行了简单对比。而后重点介绍了带压开孔-旁通封堵技术的原理、施工工艺,并通过分析得出结论,带压开孔-旁通封堵技术具有应用范围广、可靠性高、不需停输等优点,适用于天然气长输管道的应急封堵作业。  相似文献   

11.
天然气储运技术研究   总被引:2,自引:1,他引:1  
天然气的储运技术主要包括天然气管道输送、液化天然气储运、压缩天然气储运、吸附储存天然气、天然气水合物储运、液化石油气储运、天然气储气库等.介绍了各种储存和运输天然气技术的研究与应用现状,分析了这些技术存在的问题与发展趋势,并提出了新的天然气水合物浆体管道输送技术.但该技术离实际应用尚有差距,需要进一步研究.  相似文献   

12.
成品油顺序输送管道混油量的计算是设计和管理顺序输翔实管道的关键。本文根据两种不同的沿品在管路内交替时产生混油的机理及成品油顺序输送管道的运行经验,采用数值积分的方法编制出长距离成品油顺序输送管道混油量的计算程序。  相似文献   

13.
气液两相流管道容易发生振动问题,为确保其安全运行,有必要对其进行振动特性分析。根据考虑流固耦合作用的管道前两阶固有频率表达式,运用Matlab软件编程计算管道结构参数和流体参数对管道结构固有频率的影响。结果表明,考虑流固耦合作用时管道结构的固有频率下降明显,固有频率随壁厚和截面含气率的增加而增加,固有频率随管道长度、流体密度以及天然气流速的增加而降低。在实际气液两相流混输管道工程中应重视流固耦合作用对结构固有频率的影响。  相似文献   

14.
高含硫天然气管道由于含有大量的硫化氢,一旦管道发生泄漏,会带来严重威胁,所以泄漏检测至关重要。文中介绍了声波泄漏检测系统的基本检测原理、泄漏定位原理以及典型的系统组成及功能。介绍了声波泄漏检测系统应用于高含硫天然气管道的系统设置以及声波传感器型式的选择,还包括泄漏测试管路的设置、测试步骤以及测试结果等。经过现场测试及运行,声波泄漏检测系统在高含硫天然气管道的应用取得了较好的效果。  相似文献   

15.
分析并提出了管路固体物料输送的一种新的观点,认为在管路输送中应当以输送率而不是输送能耗作为界定管路输送流速的标准,推导出了管道物料输送流速的确定方法,并且在国家重点工程中应用,取得了良好经济效益。  相似文献   

16.
往复压缩机管道振动的消减   总被引:12,自引:0,他引:12  
针对一台往复压缩机管系振动十分强烈的情况,进行了振动测试,并用ANSYS软件计算管系的结构固有频率、气柱固有频率、压力脉动和振动幅值,分析确定了管系振动的原因是共振,提出了采取增加支撑改变管系结构固有频率的减振措施。模拟计算结果表明减振效果明显。  相似文献   

17.
金属软管具有减少管道的安装应力、补偿管道的位置移动、吸收管路系统的振动和管路系统噪音等功能,广泛应用于航空航天、机车船舶等领域。针对金属软管在应用中出现的事故,进行了失效原因分析,阐明了金属软管的设计与选材、加工与热处理、安装、使用环境等方面失效机理;概括了金属软管在重点行业的应用现状,提出了加强行业监管的重要性。  相似文献   

18.
简述了工业管道输送流体流动特性,以及声发射技术在管道检测中的应用。采用手持式声发射检测仪器配合不同频率传感器对在役工业管道进行检测,研究焊接有三通、法兰、阀门等外接接口的不规则管道的定位特征,对比分析规则管道与焊有外接接口的不规则管道衰减特征区别,通过对现场数据的分析,得到管道损伤定位与传播声速之间的相互关系以及不同传播速度条件下产生的定位误差,综合分析误差产生原因,作为对现场检测的经验。  相似文献   

19.
文中以西气东输二线库米什压气站为例,运用CAESARⅡ有限元分析软件对压气站管道进行静态分析及动态分析。其中,静态分析校核了管道模型在持续工况及膨胀工况下的节点应力,并计算出压缩机进出口管道在操作工况下的位移和约束力。由校核结果可知,管道系统应力均在许用范围内,最大应力节点为压缩机出口管线的放空阀处。动态分析求解了管道的前5阶固有频率,并针对固有频率较低的位置,提出了相应的措施,最终将管道的固有频率提高到11.277 Hz,使管道的振动控制在合理范围内。  相似文献   

20.
川气东送天然气管道线路水合物形成预测   总被引:1,自引:0,他引:1  
为了更好地预测、分析和处理水合物造成的不良后果,以川气东送管道为例讨论了天然气水合物的形成原因,提出了输气管线水合物预测模型,并建立了水合物形成预测的压力和温度计算模型,编制了“水合物预测软件”,预测该管道线路和场站的水合物形成条件和易形成水合物的区域.文中通过以上方法很好地预测了川气东送管道水合物的形成区域及情况,该预测方法可用于天然气管道线路水合物的形成预测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号