首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
改进的有限时间最优预瞄横向控制器设计   总被引:1,自引:1,他引:1  
马莹  李克强  高峰  郭磊  连小珉 《汽车工程》2006,28(5):433-438
提出了有限时间最优预瞄横向控制算法,根据高速公路车道保持系统实际控制要求,使用了同时考虑车辆当前偏差、预瞄点偏差和控制变量的有限时间二次型性能指标函数。运用最优跟踪算法并进行预瞄距离内曲率恒定的假设,使得控制器参数可以离线求解,保证了车辆控制的实时性。通过仿真及实车试验验证,该控制算法具有较好的跟踪效果。  相似文献   

2.
现有的铰接车辆路径跟踪控制方法在模型线性化和预瞄误差过程均产生较大误差,导致跟踪精度降低。针对铰接车辆路径跟踪控制,构建了铰接车辆动力学模型,采用基于状态轨迹的线性化方法补偿动力学误差,提出了考虑路径多点预瞄误差的控制目标,设计了基于动力学模型的模型预测控制器,用以优化铰接点处转向力矩。为验证该方法的有效性,采用Matlab/Simulink和Adams软件构建了联合仿真平台,对控制算法进行了仿真验证。仿真结果表明,本文中设计的控制器可有效提升铰接车辆路径跟踪精度。  相似文献   

3.
在设计车道偏离防止系统时,为充分利用差动制动控制和主动转向控制,同时兼顾车辆行驶的安全性与驾驶员驾驶自由,提出了一种双级预警的利用主动转向与差动制动协调控制的车道偏离防止策略。当车辆危险程度较低时仅采用差动制动控制,保证驾驶员对转向盘的控制;当车辆危险程度较高时,采用预测控制实现主动转向与差动制动系统的协调控制,使车辆能快速地回到车道中心线。选取跨道时间来设计车辆偏离预警算法,并根据车辆转向系统的响应分别设定预警阈值。为保证车辆的稳定性,采用模型预测控制算法添加合理的约束,设计差动制动控制和主动转向与差动制动协调控制器。仿真与硬件在环试验结果表明,所设计的基于主动转向与差动制动协调的车道偏离防止控制策略在保证车辆行驶安全性的前提下给予了驾驶员充分的驾驶自由。  相似文献   

4.
当车辆队列的应用场景从一维拓展至二维时,纵向间距保持与横向跟踪控制之间将出现显著的耦合效应。在高速工况下,忽视纵横向跟踪功能的耦合效应将导致跟踪误差变大,甚至造成车辆失稳。为解决上述问题,本文中提出了一种车辆队列纵横向耦合跟踪控制算法,通过构建基于纵向间距和横向参考轨迹的参考向量场获得期望速度矢量,采用哈密尔顿函数获得车辆上层运动控制需求的期望总力和总力矩;同时,提出一种基于伪逆矩阵的控制分配算法,将期望总力和总力矩在有约束的物理环境下分配至各个车轮,在保证分配精度的前提下提高了实时性。仿真和实验结果表明,本文提出的纵横向耦合跟踪控制算法能有效完成二维场景下的车辆队列运动控制,实现队列的安全、高效的协同驾驶。  相似文献   

5.
智能车辆系统辨识与控制算法研究   总被引:2,自引:0,他引:2  
采用逆M序列作为系统的输入信号,通过最小二乘算法得到车辆转向系统、驱动系统的传递函数,结合车辆预瞄运动学模型和车辆二自由度转向动力学模型,建立车辆转向控制与位置误差数学模型.根据现代控制理论设计最优导航控制器稳定跟踪目标路径,基于Backstepping函数控制算法,选取Lyapunov函数设计智能车辆换道及超车轨迹跟踪控制器.仿真分析和试验结果表明:所设计的控制器在智能车辆户外自主导航中具有良好的跟踪性能.  相似文献   

6.
为实现对无人驾驶机器人机械腿运动的精确控制,提出了一种模糊监督控制方法。通过对驾驶机器人机械腿操纵自动挡汽车油门/制动踏板的运动分析,描述了机械腿各杆件的运动学关系,并建立了机械腿的拉格朗日动力学模型。在此基础上,设计了一种模糊监督控制器,并通过Lyapunov稳定性分析原理,验证了跟踪误差的收敛性,保证了机械腿对位移跟踪的稳定性。模糊监督控制器以机械腿的位移跟踪误差及误差变化率为输入,位移跟踪过程中,实时监测跟踪误差的变化趋势,当误差不超过给定值时,模糊控制器单独作用,当误差超出给定值,采用模糊监督控制器。最后,设计了一种油门/制动机械腿切换控制器,搭建了油门/制动机械腿车速跟踪仿真模型,仿真结果与实车试验数据比较,验证了提出方法的有效性。  相似文献   

7.
为实现商用车线控转向,设计一套新的线控转向系统架构及其转角跟踪控制算法。新的线控转向系统采用丝杠螺母结构中的丝杠直接控制纵拉杆,螺母通过带轮机构被电机驱动。对线控转向系统结构进行运动学分析,推导转向系统可变传动比,采用前轮转角为状态变量,建立线控转向系统二阶动力学模型。基于转角跟踪目标,采用反步控制算法,设计线控转向系统转角跟踪控制器,通过反馈系统线性化处理系统参数不确定和环境干扰问题,实现准确的目标转角跟踪,并建立李雅普诺夫函数,证明了采用反步控制的线控转向系统是渐进稳定的。搭建采用“丝杠螺母+带轮机构”架构的线控转向实车底盘测试台架,选取蛇形和混合工况进行控制算法验证。研究结果表明:与滑模控制算法的测试结果对比可知,反步控制算法绝对平均跟踪误差值降低了71.88%~79.57%,跟踪误差标准偏差值降低了71.32%~78.50%;线控转向系统反步控制转角跟踪算法能够减少系统收敛到原点的时间,抑制系统的抖振,提高车辆线控转向系统转角跟踪的操纵灵活性。  相似文献   

8.
为保证车道保持辅助系统在视觉失效情况下能够顺利移交车辆控制权,利用目标车方位信息间接估算道路曲率,在纯追踪(Pure Pursuit)算法的基础上,参考车速和道路曲率,利用模糊控制器进行转向修正,并提出了车道保持指数用以评价车道保持性能。构建了硬件在环(HIL)仿真测试平台,利用快速控制原型和某视觉感知系统分别对3种控制策略进行了4种测试场景下的硬件在环测试。测试结果表明,使用改进型Pure Pursuit策略的自车能够有效避免驶出车道,4种测试场景下平均车道保持指数为65.1%,较Pure Pursuit策略和转向盘保持策略分别提高73.9%和135.2%。  相似文献   

9.
为实现不同驾驶工况下精确的车速与轨迹跟踪,提出了一种驾驶机器人车辆多模式切换控制方法。通过分析驾驶机器人操纵自动挡车辆踏板与转向盘的运动,建立了驾驶机器人加速与制动机械腿和转向机械手的运动学模型和车辆纵横向动力学模型。在此基础上,设计了加速/制动机械腿切换控制器、模糊PID/模糊PID+Bang-Bang车速切换控制器和模糊PID/模糊PID+Bang-Bang转向切换控制器。加速/制动机械腿切换控制器以目标车辆加速度为切换规则,协调控制加速和制动机械腿,车速切换控制器以车速误差作为Bang-Bang控制器的模式决策准则和模糊PID控制器的输入,转向切换控制器以轨迹跟踪侧向误差作为Bang-Bang控制器的模式决策输入,并以当前与下一个控制时刻横摆角速度之差作为模糊PID控制器的输入。仿真和试验结果验证了所提出方法的有效性。  相似文献   

10.
吴俊陈刚 《汽车工程》2018,(10):1215-1222
为实现不同驾驶工况下精确的车速与轨迹跟踪,提出了一种驾驶机器人车辆多模式切换控制方法。通过分析驾驶机器人操纵自动挡车辆踏板与转向盘的运动,建立了驾驶机器人加速与制动机械腿和转向机械手的运动学模型和车辆纵横向动力学模型。在此基础上,设计了加速/制动机械腿切换控制器、模糊PID/模糊PID+Bang-Bang车速切换控制器和模糊PID/模糊PID+Bang-Bang转向切换控制器。加速/制动机械腿切换控制器以目标车辆加速度为切换规则,协调控制加速和制动机械腿,车速切换控制器以车速误差作为Bang-Bang控制器的模式决策准则和模糊PID控制器的输入,转向切换控制器以轨迹跟踪侧向误差作为Bang-Bang控制器的模式决策输入,并以当前与下一个控制时刻横摆角速度之差作为模糊PID控制器的输入。仿真和试验结果验证了所提出方法的有效性。  相似文献   

11.
提出一种基于粒子群优化神经网络PID的车道保持控制方法。首先搭建车路模型和EPS(Electric Power Steering,电动助力转向系统)模型;然后建立粒子群优化神经网络PID控制器,利用粒子群算法优化神经网络的初始权值和阈值,提高神经网络算法的收敛速度和精度,优化后的神经网络算法在线调整PID控制器的3个参数比例Kp、积分Ki、微分Kd,输出最优组合;最后,进行车道保持硬件在环试验,试验表明:相对于常规PID控制和神经网络PID控制,在粒子群优化神经网络控制下,车道保持系统的跟踪精度和稳定性都更高。  相似文献   

12.
为解决智能车辆在车道变换过程中的路径规划和路径跟踪问题,首先,利用梯形加速度法设计了车道变换虚拟理想轨迹,该路径规划方法的适应性取决于车道变换时间、横向加速度及变化率等关键变量的约束条件,因而对各关键变量之间的数学关系进行了定量计算,并绘制了不同工况下的车道变换虚拟理想轨迹,用于分析各关键变量对路径规划的影响;其次,建立了线性离散的车辆动力学预测模型,综合分析了车辆模型的控制输入、状态变量以及道路结构参数等约束条件,构建了多约束模型预测控制(MMPC)系统用于车道变换路径跟踪,并基于Hildreth二次规划算法对其目标函数进行了求解,获得前轮转向角控制量,从而保证智能车辆在车道变换过程中的路径跟踪性能及操纵稳定性能;最后,利用MATLAB和Carsim软件对提出的多约束模型预测控制系统进行联合仿真,并构建单约束模型预测控制(SMPC)系统与其进行性能比较,分别对车道变换时间为3 s和6 s时的车道变换性能进行比较分析。结果表明:当车道变换时间为6 s时,2种控制系统都能较好地实现车道变换功能;当车道变换时间为3 s时,与SMPC控制系统相比较,MMPC控制系统能够在有效跟踪期望行驶路径的同时改善车辆的操纵稳定性,从而提高车辆在路径跟踪过程中的主动安全性能。  相似文献   

13.
本文提出了一种用于验证车道保持辅助系统(LKA)控制策略的仿真方法,在分析从仿真测试到实车验证过程中关键环节对策略验证可靠性的影响的基础上,提出的仿真方法综合考虑了传感器特性、控制器特性和执行部件特性。本文中LKA控制策略采用了单点预瞄模型,用于验证的测试用例是依据LKA典型应用场景定义的,车辆动力学模型是在VeDYNA中搭建的,交通场景模型是在VTD中搭建的,实车工况数据来源于真实摄像头、真实控制器和线控转向机。通过对比添加误差模块前后的仿真数据和实车测试数据验证了本文提出的仿真方法的合理性。  相似文献   

14.
罗俊林  吴维  苑士华  刘辉  李鑫勇 《汽车工程》2021,(3):374-380,404
本文中设计了一种单行星排液压机械无级变速器,并为提高其速比跟踪控制性能,提出一种带前馈的自抗扰控制算法,以实现速比的跟踪控制。首先建立系统数学模型,通过传动系统转速关系的理论分析,得到前馈控制量,进一步采用自抗扰控制器对速比进行闭环控制。接着建立系统仿真平台和原型样车,通过仿真和试验对设计的带前馈自抗扰速比控制器进行验证。结果表明:提出的自抗扰速比控制法能有效实现速比的跟踪控制,与经典PID控制相比,具有速比偏差小、响应速度快、适应性好和抗干扰能力强的优点。  相似文献   

15.
车道保持控制系统是汽车安全辅助驾驶的重要组成部分,可有效提高汽车主动安全性、避免车辆无意识地偏离本车道。目前,大部分车道保持控制系统在工作时将驾驶人的操作视为外界干扰,没有考虑人机共驾阶段下驾驶人与控制系统的控制权分配问题,易造成人机冲突、影响驾驶人的驾驶感受。论文兼顾驾驶人与辅助控制系统各自优势,基于人机共驾技术对车道保持控制系统进行研究。构建基于安全行驶区域与最晚预警边界相结合的车道偏离决策模型,在保证其预警精度的同时降低计算复杂性,根据车辆行驶状态和路面附着系数动态调整预警阈值;研究串级MPC-PID控制策略实现对车辆横向位置的控制,将最优问题转化为二次规划求得目标前轮转角,利用PID算法完成对目标前轮转角的跟踪;引入共驾系数对车辆的控制权进行分配,研究共驾系数分配模型,以车辆状态误差和驾驶人转向力矩作为模糊控制的输入变量、共驾系数作为输出变量,降低辅助控制系统与驾驶人之间的冲突;最后,利用CarSim与Simulink联合仿真对所研究的控制策略进行仿真验证,结果表明共驾系数能够根据驾驶人的操作和车辆运行状态的变化实现动态调整,辅助控制力矩与驾驶人输入力矩变化趋势相同,在保留驾驶人一定操作的基础下可避免车辆偏离车道、降低人机冲突。  相似文献   

16.
分布式驱动无人车能通过差动转向和原有自主转向的共同作用保证车辆的轨迹跟踪。在2自由度车辆动力学模型基础上,基于模型预测控制算法,提出预瞄时间自适应的轨迹跟踪方法,以满足转弯和直行工况的预测要求;考虑分布式驱动无人车构型特点,基于参考横摆角,采用左右两侧驱动轮转矩差动控制,能在保证无人车总体转矩需求不变的情况下实现轨迹跟踪。为综合上述两种方法的优点,提出了利用设置权重的方法对自主转向和差动转向轨迹跟踪进行协调控制,并进行了Matlab与Car Sim的联合仿真和实车实验验证。结果表明,协调控制有效改善了转向的响应速度和灵活性,同时提高了无人车轨迹跟踪的可靠性和准确性。  相似文献   

17.
提出了两层驾驶员转向预测模型,基于驾驶员视觉预瞄信息的第一层体现了路径跟踪特性,基于神经肌肉动力学模型的第二层体现了驾驶员转向操作特征,采用Car Sim/Simulink对比了不同状态驾驶员的路径跟踪性能。设计了车道偏离防避系统(LDAS)的期望横摆角速度观测器和转角PID控制器。建立了转向系统等效动力学模型,并基于滑模理论设计了LDAS的鲁棒转矩控制器。由于车辆偏离车道程度与预瞄点的侧向偏移量和驾驶员力矩的关系不能精确描述,故基于模糊控制理论设计了LDAS人机共驾模糊控测器。进行了基于Car Sim/Simulink的仿真和基于Car Sim/Lab VIEW RT的硬件在环试验,对比了驾驶员、LDAS控制器和人机共驾纠正车辆偏航的能力。结果表明,所提出的人机共驾策略能及时纠正车辆偏航,使之恢复到正常车道,并保证从人机共驾到驾驶员控制切换过程的平顺性。  相似文献   

18.
分布式驱动无人车能通过差动转向和原有自主转向的共同作用保证车辆的轨迹跟踪。在2自由度车辆动力学模型基础上,基于模型预测控制算法,提出预瞄时间自适应的轨迹跟踪方法,以满足转弯和直行工况的预测要求;考虑分布式驱动无人车构型特点,基于参考横摆角,采用左右两侧驱动轮转矩差动控制,能在保证无人车总体转矩需求不变的情况下实现轨迹跟踪。为综合上述两种方法的优点,提出了利用设置权重的方法对自主转向和差动转向轨迹跟踪进行协调控制,并进行了Matlab与Car Sim的联合仿真和实车实验验证。结果表明,协调控制有效改善了转向的响应速度和灵活性,同时提高了无人车轨迹跟踪的可靠性和准确性。  相似文献   

19.
本文中对四轮独立转向电动汽车的转向控制方法进行研究。首先,基于前轮转向车辆的理想横摆角速度模型,建立四轮独立转向2自由度动力学模型。接着,以四轮侧偏角之和绝对值最小化作为优化目标函数,以质心侧偏角为零和理想横摆角速度作为约束条件,采用线型优化算法求解系统前馈控制器。再以轮胎侧偏角和横摆转矩为输入建立线性控制模型,运用最优区域极点配置方法设计反馈控制器。最后,建立人-车-路闭环仿真系统,分别进行双移线道路仿真实验和对开路面上的行驶仿真实验。结果表明,控制器能根据路面附着情况分配各轮转角,保证车辆跟踪理想状态。实车双移线实验进一步验证了控制器对车辆理想状态良好的跟踪精度。  相似文献   

20.
车道保持控制系统是汽车安全辅助驾驶的重要组成部分,可有效提高汽车主动安全性、避免车辆无意识地偏离本车道。目前,大部分车道保持控制系统在工作时将驾驶人的操作视为外界干扰,没有考虑人机共驾阶段下驾驶人与控制系统的控制权分配问题,易造成人机冲突、影响驾驶人的驾驶感受。论文兼顾驾驶人与辅助控制系统各自优势,基于人机共驾技术对车道保持控制系统进行研究。构建基于安全行驶区域与最晚预警边界相结合的车道偏离决策模型,在保证其预警精度的同时降低计算复杂性,根据车辆行驶状态和路面附着系数动态调整预警阈值;研究串级MPC-PID控制策略实现对车辆横向位置的控制,将最优问题转化为二次规划求得目标前轮转角,利用PID算法完成对目标前轮转角的跟踪;引入共驾系数对车辆的控制权进行分配,研究共驾系数分配模型,以车辆状态误差和驾驶人转向力矩作为模糊控制的输入变量、共驾系数作为输出变量,降低辅助控制系统与驾驶人之间的冲突;最后,利用CarSim与Simulink联合仿真对所研究的控制策略进行仿真验证,结果表明共驾系数能够根据驾驶人的操作和车辆运行状态的变化实现动态调整,辅助控制力矩与驾驶人输入力矩变化趋势相同,在保留驾驶人一定操作的基础下可避免车辆偏离车道、降低人机冲突。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号