首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
南京第四大桥悬索桥施工猫道采用无抗风缆无制振索3跨连续结构,索塔上预埋件少,调整猫道线形方便.猫道承重索、门架承重索及猫道扶手索通过猫道门架组成空间整体结构共同受力.通过计算并调整,使猫道线形与主缆空缆线形平行,满足施工需要,承重索张力安全系数满足规范要求.采用节段模型风洞试验与有限元计算相结合的方法,对猫道抗风稳定性进行分析.研究表明,增加横向通道数量,可以提高猫道抗风稳定性;而制振索对猫道抗风稳定性影响较小;非静力风及絮流场不控制猫道抗风稳定性分析.  相似文献   

2.
至喜长江大桥大江桥为主跨838m的结合梁悬索桥,主缆索股采用预制平行钢丝束股法制作。主缆施工采用3跨连续式猫道,猫道在两边跨呈八字形。猫道面宽4.0m,每条设6根48mm钢丝绳。锚碇前端设置转向架,改变猫道索锚固位置,使上、下部结构可同时施工。采用有限元法对猫道进行计算,确保猫道结构满足要求。施工过程中,采用拖轮水下过渡法使先导索过江,先导索过江后,塔顶横移先导索,将门架支承索过江,并安装承重索、猫道面网、侧网等。在猫道面架设完成后,通过锚碇处的千斤顶和塔顶转向鞍座处的导链,对猫道线形进行整体调整,使猫道线形满足施工要求。  相似文献   

3.
《世界桥梁》2021,49(4)
武汉杨泗港长江大桥为主跨1 700 m单跨双层钢桁梁悬索桥,猫道采用无抗风缆三跨连续式结构。大桥跨度大、施工环境复杂,采用往复式猫道对拉牵引系统,包括35 t主、副卷扬机以及牵引索、转向滑车;2个锚碇处各布置2台35 t主牵引卷扬机,桥塔和锚碇支墩门架处布置若干辅助小型卷扬机。通过方案比选,第1根先导索(下游侧)采用大型拖轮拽拉"水面过渡法"架设,第2根先导索(上游侧)利用第1根先导索牵引过江后空中横移就位;扶手索采用常规"吊挂法"进行架设;牵引索、门架支撑索和猫道承重索采用"托架法"进行架设。对引起线形偏差的原因采取针对性措施,并在施工中及时进行调整,承重索标高偏差控制在50 mm以内,猫道线形满足规范和设计要求。  相似文献   

4.
扼要介绍了武汉阳逻长江大桥施工猫道的设计,采用ANSYS的LINK10与BEAM4单元计算了猫道这一柔性空间索桁结构在空索状态及成形状态的线形。在静力验算时,猫道中间标高处等效静阵风风速取为50.4m/s,由于主要承重结构钢丝绳弹性模量为索力的函数,本文参考国内多座桥梁施工猫道钢丝绳弹模实测值取用1.30×105MPa,按5种工况8种状态验算了猫道的静风稳定性验算。  相似文献   

5.
白晓宏  李俊霖 《公路》2021,66(12):177-181
猫道作为悬索桥上部结构重要的施工平台,其线形直接影响到索股牵引、挤紧、缠丝等作业工序,因此猫道设计的重点是线形分析,它是猫道静力分析和稳定性分析的前提和基础,是猫道结构设计的关键.针对大跨度柔性索结构特性,即大变形和几何非线性,对新田长江大桥猫道线形进行了计算分析,有别于传统索单元,采用分段悬链线法进行线形分析,从索单元的基本受力特点出发,推导出分段悬链线的计算方法,采用增量迭代法,以力学平衡条件和变形相容条件确定各分段悬链线的索力和曲线形状,整体计算采用西南交通大学开发的BNLAS桥梁非线性分析系统进行线形分析,解决了大跨柔性索单元几何非线性问题,线形分析具有很高的效率和精度.  相似文献   

6.
悬索桥基准索股线形随着索股跨度、温度及两端高差变化而变化,为实现悬索桥基准索股现场的快速定位与调整,研究一套高效、实用的基准索股线形施工控制计算方法。通过理论推导编制了考虑索鞍切点变化的索股线形计算程序,建立了基于悬链线理论的索股跨中标高影响公式和调索公式。以某悬索桥为工程背景,进行参数分析,得到索股跨中标高随索股跨度、温度、两端高差变化的影响公式,与传统的抛物线、悬链线公式计算结果进行对比分析,结果表明:考虑索鞍切点变化的索股线形计算程序的计算结果与设计结果吻合较好,误差为毫米级,具有较高的精度。与传统抛物线、悬链线公式相比,考虑切点位置变化的索股跨中标高影响系数随着影响因素的变化而变化,可近似为斜直线。索股跨中标高对温度和索股两端间距的变化比较敏感,影响系数在2左右,施工中应对桥塔偏位和温度进行严格的监测,必要时采取相应调整措施。无论索股跨度、温度及两端高差单独发生任意变化,还是发生任意组合变化,该影响公式和调索公式都能保证一定的精度,误差不超过0.2%,而悬链线公式最大误差为0.81%,抛物线公式最大误差达到8%,此时已经不能满足工程精度的要求。  相似文献   

7.
宜昌至喜长江大桥在猫道设计中充分考虑了猫道边跨八字形线形的特点,猫道索计算按照悬链线公式和有限元软件计算2种方式进行相互校核,确保了计算的准确性。在施工中,在锚碇前方设置猫道转向架,确保锚碇与猫道同步施工。而导索过江直接采用φ36牵引索过江,江中心对接,节省了工期。  相似文献   

8.
为确保猫道的成桥线形符合设计要求,基于悬索力学理论,建立了猫道施工控制计算的解析迭代法,以此确定猫道承重索无应力长度及空索标高等.计算方法中考虑了中、边跨由于分离布置而产生的不平衡水平力及其影响.湖北省四渡河大桥的应用表明,该文提出的计算方法计算精度高、收敛速度快,具有较高的工程应用价值.  相似文献   

9.
悬索桥猫道线形计算通常采用解析法——分段悬链线法,并把所有猫道索当作一条索进行迭代求解。现以猫道传统计算方法为基础,并根据猫道实际受力特点,考虑附加荷载在猫道承重索和猫道门架承重索上的分配关系以及门架承重索的边界条件,以猫道门架高度作为几何约束条件,将两种承重索进行协调计算,另外,在此基础上,通过调整门架高度对猫道线形进行优化调整。分析结果表明:猫道索协调计算方法更符合猫道实际受力情况,在此基础上调整猫道门架高度进行线形优化,可使猫道实际线形与目标线形吻合一致。  相似文献   

10.
线形控制是悬索桥建造过程中关键过程,基准索股架设精度的可靠与否直接决定空缆线形及成桥线形能否达到设计要求。通过对索股弹性模量、延米自重、施工单位对调索量控制精度、温度传感器测量精度、桥塔纵向偏位测量精度、基准索股标高测量精度等影响基准索股架设线形的因素进行了分析,结合规范要求与功能函数的思想,提出基于可靠度理论的悬索桥的基准索股架设精度可靠性分析方法,编制了改进后的蒙特卡洛法计算程序。利用该方法对主跨1200m的虎门二桥之大沙水道悬索桥中跨基准索股架设精度的可靠性进行了分析。研究结果表明:当该桥中跨调索精度为±25mm时,可靠度值为2. 03,满足规范要求。  相似文献   

11.
武汉杨泗港长江大桥为主跨1700 m的单跨双层钢桁梁悬索桥,猫道采用三跨连续式无抗风缆猫道结构体系,猫道中跨跨度1700 m。猫道主要结构包括猫道承重索、门架支承索、扶手索、猫道面层、猫道门架系统、横向天桥、猫道索转向系统以及锚固调节系统等。猫道面宽4.0 m;猫道承重索由10根?56 mm钢丝绳组成,通过精轧螺纹钢筋和钢丝绳锚固于锚碇前锚面处;门架支承索由2根?54 mm钢丝绳组成,通过散索鞍支墩门架锚固于锚碇前锚面处;猫道索通过塔顶转向鞍座、下拉装置实现竖向转向,通过横向变位刚架实现水平转向。猫道结构静力计算结果表明:猫道索安全系数及静力抗风稳定性满足规范要求。  相似文献   

12.
哈罗格兰德大桥为世界首座空间主缆构造的双塔单跨悬索桥,不同于传统悬索桥,其施工工艺复杂,施工质量控制较为严苛,且境内外均无主缆顶推施工先例。通过设计特殊类型的主缆顶推系统,满足成桥主缆受力及线形、索夹横向偏转角度要求。依托主缆顶推施工,将猫道由整体式变为分离式,更好地满足钢箱梁吊装及后期猫道拆除需求。通过主缆顶推系统型式及现场试验,证实该系统可满足空间主缆施工需要。分别对比两种不同的顶推系统布设方式,结果表明:7道顶推系统能够减小整体施工难度及节约工期和成本,同时更便于施工组织。研究成果可为同类型桥梁施工提供参考。  相似文献   

13.
重庆寸滩长江大桥为主缆主跨跨度880 m,矢跨比1/8.8的双塔悬索桥,主缆采用预制平行钢丝索股。介绍该桥主缆施工技术,重点阐述该桥主缆施工过程中采取的猫道体系转换、小循环牵引系统、主缆索股牵引过程控制、基准索股线形控制等措施,上述措施使主缆施工得以顺利完成,且施工质量满足规范及设计要求。  相似文献   

14.
孙胜江 《公路》2008,(6):50-54
猫道是悬索桥施工中的重要临时设施,以四渡河悬索桥为工程背景,介绍了猫道架设的主要施工流程,包括具有创新意义的火箭抛送先导索施工方法,牵引系统和猫道承重索的架设以及承重索的架设原则和线形调整方法,可为类似工程提供借鉴。  相似文献   

15.
以某166m+628m+166m双塔单跨钢箱梁悬索桥为例,在最大静阵风风速49m/s环境下,主缆施工采用3跨分段式猫道,不设置抗风缆,承重索锚固于带拉板的钢管混凝土锚梁结构上。利用ANSYS软件进行计算分析,验证猫道钢丝绳索力及抗风稳定性均满足规范要求,横向天桥的设置对猫道抗风稳定性效果明显。  相似文献   

16.
宜昌至喜长江大桥大江桥为主跨838m悬索桥,猫道为三跨连续猫道,西坝锚碇为地连墙基础的重力式锚碇。由于桥塔和点军锚碇均已施工完成,为确保全桥工期目标,在保持猫道设计线形不变的条件下,通过在西坝锚碇前端设置1套转向架,实现猫道和西坝锚碇同步施工。猫道转向架为万能杆件拼装成的桁架结构,高20m,底部设扩大基础,在转向架上设置猫道承重索转向鞍座。施工时,在扩大基础上安装预埋件、拼装转向架,同时按西坝锚碇填芯混凝土实际浇筑高度,通过增加预埋件长度、设置支撑架来调整承重索锚固预埋件埋置深度;猫道导索、牵引索、门架支撑索、承重索、扶手索架设及面层、横向天桥等安装的同时,进行西坝锚碇施工;西坝锚碇施工完成后对猫道及牵引系统进行完善。  相似文献   

17.
悬索桥索夹安装位置及吊索下料长度计算   总被引:1,自引:0,他引:1  
姜军  孙胜江 《公路》2007,(8):63-66
为确保吊索受力安全和桥面线形符合设计要求,在主缆架设后,根据索塔和主缆实际施工误差预测成桥状态塔顶标高和主缆跨中标高,并依据预测的主缆线形,确定索夹的安装位置和吊索精确的下料长度。  相似文献   

18.
以马鞍山长江公路大桥左汊主桥为例,介绍悬索桥猫道结构计算思路以及主要设计方法和内容,重点阐述猫道线形以及猫道索下料长度计算方法和内容,提炼猫道结构计算和设计要点,为以后大跨度悬索桥猫道计算和设计提供参考和依据。  相似文献   

19.
猫道作为悬索桥上部构造施工必不可少的工作通道,其结构构成主要由猫道承重索、猫道面层、栏杆及扶手、抗风系统、门架系统﹑横向通道及各锚固连接等构成。猫道是悬索桥主缆系统乃至上部结构施工必备的临时结构,是施工人员在其上完成主缆架设、索夹和吊索安装、钢箱梁吊装、主缆缠丝及防护涂装等施工任务的重要操作平台。由于猫道处于高空,系统组成构件多,结构复杂,且使用周期长,架设过程受环境影响大、施工难度大、危险程度高,为保证猫道架设线形与施工过程的安全,合理的施工工艺及有效的安全控制措施是关键,对于猫道架设线形控制,采用承重索长度调整系统,猫道线形调整系统,锚碇处的锚固系统,塔顶的固定及调整装置等多种调节系统和高精度徕卡全站仪,对猫道的线型控制尤为重要。  相似文献   

20.
黄冈公铁两用长江大桥主桥为双塔双索面钢桁梁斜拉桥,为保证成桥状态满足设计要求,采用桥梁专用有限元分析软件3D-bridge建立全桥空间模型进行计算分析,运用无应力状态法,通过设定合龙与成桥两个目标状态进行施工监控.桥塔施工通过预抬支座垫石与斜拉索锚固点标高进行控制;采用相对坐标法,通过不间断施工测量过滤温度影响后调整杆件安装工序来控制钢桁梁悬臂架设线形;全桥斜拉索通过两次张拉到位,采用拨出量循环迭代法对初张拉索力精度进行有效控制;主桥中跨钢桁梁采用主动合龙,通过对合龙口转角、高程与纵横向位置的调整保证合龙精度;在道碴槽板施工完毕开始进行全桥二次调索.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号