首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于原位观测试验,通过对不同填土高度的管涵荷载及变形、管涵及涵周土体应力分布的全程量测,对不同填土高度下大孔径波纹管涵的力学性能进行了深入分析。结果表明,管顶始终处于压应力状态,从管顶向下至90度范围截面承载逐渐转为拉应力,而从90度截面至管底,波谷截面主要承受拉力,并至管底达到最大值,而波峰截面则由拉应力向压应力转变,至管底为压应力状态。波纹管涵应力及变形均随着填土高度逐渐增长,但其增速逐渐变缓,并最终趋于稳定,其大小均满足波纹管涵的使用要求。而涵顶与涵底土压力测试数据表明,波纹管涵土压力值与规范方法计算值存在较大差异,且差异随填土高度的增加进一步加大,表明高填方段的管涵土压力计算应进行适当折减。  相似文献   

2.
该文结合依托工程,对高填土大跨钢波纹管涵的力学性能进行了现场测试和有限元分析,并探讨了钢管波纹参数、管顶填土高度、土体弹模、不对称填土、地基不均匀沉降等对钢波纹管涵应力和变形的影响。结果表明:钢波纹管涵变形和应力随填土高度增加而增长,但增长趋势逐渐变缓、土-拱效应明显;有限元分析与试验结果相吻合,表明有限元模型能够满足设计精度要求;钢波纹管最大变形和等效应力随波高、土体弹模增大而减小,随波距增加而增大。最后,将各国规范的设计计算结果与有限元、测试结果进行对比,提出钢波纹管涵土压力设计计算采用AASHTO或中规、管壁应力设计计算采用CHDBC的建议。  相似文献   

3.
基于原位观测试验与理论研究,对高填方段波纹管涵的涵顶垂直土压力的分布特征与变化规律进行了探讨.首先,开展了高填方段波纹管涵垂直土压力现场观测试验.试验结果表明,高填方段管涵顶部存在土拱效应,规范的土柱法计算土压力值误差较大,偏于保守,而管涵顶部平面的土压力值并非均匀分布,存在明显的应力集中区域.在此基础上,结合试验规律及马斯顿理论,考虑由于土拱效应造成的应力集中现象,建立了高填方段波纹管涵垂直土压力计算模型,并进行了理论求解,从而提出了高填方段波纹管涵垂直土压力计算方法.最后,依据此模型对涵顶填土重度、土体内摩擦角、黏聚力、管径大小等主要影响因素进行了参数分析.结果表明,土体重度对管涵垂直土压力数值影响较大,而内摩擦角及黏聚力的影响较小.  相似文献   

4.
为研究高填方盖板涵涵顶垂直土压力的分布特性,改进盖板涵土压力计算方法,采用离心模型试验与有限元软件分析不同填高下盖板涵涵顶垂直土压力分布形式与填土变形规律,揭示盖板涵涵顶垂直土压力分布特性的成因,通过正交试验研究涵顶土压力不均匀系数与填土高度、弹性模量、泊松比、容重以及内摩擦角的关系,建立考虑涵顶土压力分布特性的高填方盖板涵垂直土压力分析模型,得出盖板涵涵顶垂直土压力计算公式。结果表明:盖板涵涵顶垂直土压力沿跨径呈"马鞍形"分布,涵顶两端垂直土压力总体可达涵顶中心垂直土压力的2倍左右,涵顶两侧土压力应力集中程度明显高于涵顶中心附近;涵顶边缘附近受附加土压力的影响大于涵顶中心附近,此为涵顶垂直土压力为不均匀分布的成因;随着填土高度与容重的增加,涵顶土压力不均匀系数先增加后减小;涵顶土压力不均匀系数与填土的内摩擦角、泊松比呈负相关,与填土的弹性模量呈正相关;对涵顶土压力不均匀系数敏感程度的大小顺序为:内摩擦角填土高度弹性模量泊松比容重;文中公式计算得出的涵顶垂直土压力变化规律与数值模拟及模型试验成果较为吻合。  相似文献   

5.
为了推广钢波纹管涵洞在湿陷性黄土地区的应用,解决现有涵洞不均匀沉降问题,对钢波纹管涵洞施工过程中管周的受力特征进行研究。结果表明:钢波纹管内波峰、波谷、波侧填土初期应变值存在重新分布的现象;填土高度在管顶1.0~1.5 m时,管涵受力较为复杂,施工时应重点观测;波峰整体下半圆受拉,上半圆受压,而波侧与其相反;管外土压力随着填土高度增加而增加,且填土管顶增加1.5 m以内增长速度较快,后趋于平缓。  相似文献   

6.
为了对钢波纹管涵的力学性能进行研究分析,通过现场测试和有限元分析研究了沟埋式公路钢波纹管涵的受力性能,并分析了地基弹性模量、填土高度、波纹管参数对钢波纹管涵变形和土压力的影响。结果表明:施工填土初期管涵先产生竖向拱起,回填至管顶后竖向变形开始减小;随着填土高度增加,土压力变大,且管顶土压力最大;有限元分析所得结果与现场试验数据相吻合,表明建立的有限元模型在精度上能够满足工程要求。  相似文献   

7.
为探明涵周土特性对高填方涵洞涵顶土压力及沉降特性的影响,基于数值仿真模拟,分析了不同涵顶填土模量、涵侧填土模量、地基土模量等因素对高填方不同结构型式涵洞涵顶土压力及其变形特性的影响,并结合计算结果提出相关的工程技术建议。研究结果表明:(1)随着涵填土模量E与涵侧填土模量Et的增大,涵顶垂直土压力σz、涵顶垂直土压力集中系数Ks及涵顶内外土体沉降差δ均呈现逐渐减小趋势,且涵侧填土模量Et较涵顶填土模量E影响更大;当涵侧填土模量大于涵顶填土模量的2倍时,Ks值可比二者相等时平均降低15%左右;(2)σz和Ks值随着地基土模量Ed的增大而增大,说明并非地基强度越大对高填方涵洞结构受力越有利,因此,当地基土质较差不能满足地基承载力要求而需采用地基处理时,应注意增大地基土模量对涵洞结构带来的不利影响;(3)涵洞结构断面不同,涵顶填土的沉降变形及垂直土压力σz变化规律也不同,在高填方涵洞设计中,应掌握不同断面型式涵洞各位置处的受力变形情况以及最不利点位置,合理选择涵洞断面结构型式。  相似文献   

8.
为探究高速黄土路基涵洞土压力分布特征,改进高填方涵洞结构设计,以山西省某拱涵为例,采用CANDE-2007有限元软件建立高填方涵洞数值分析模型,以涵洞设涵方式和填土高度为主要影响因素,揭示涵洞垂直土压力及沉降分布特征,分析不同填土高度下涵顶土压力系数变化,比较上埋式和沟埋式两种设涵方式涵洞涵顶土压力随填土高度变化特征,讨论设涵方式及土拱效应对涵洞应力的影响。在拱涵结构上部土体中布置土压力计,记录土体的实测土压力数据,并将数值模拟结果与实测数据结果相互验证。结果表明:涵洞中心与两侧土体的沉降明显不同,导致土拱效应的产生,是影响涵洞顶部垂直土应力变化的重要因素; 2种设涵方式涵洞涵顶土压力随填土高度变化均呈线性增长趋势;填土高度大于5 m后,随填土高度增加,上埋式涵洞土压力系数呈现先急剧增加再缓慢降低的变化趋势,涵顶伴随应力集中;而沟埋式涵洞土压力系数随高度增加逐渐降低后趋于稳定,其涵顶所受垂直土压力减小;沟埋式涵洞中心沉降值总是大于同等高度下上埋式涵洞的中心沉降;现场监测与数值模拟对比,实测土压力大于数值模拟结果,工程中涵顶应力集中现象更明显。  相似文献   

9.
为探明山区地形条件对高填方涵洞涵顶土压力及沉降特性的影响,基于数值仿真模拟,分析不同涵洞结构断面型式、沟谷宽度、沟谷坡度条件下高填方涵洞涵顶土压力及其涵顶土体沉降变形规律,并结合计算结果提出相关的工程技术建议。研究结果表明:(1)沟谷宽度B与涵顶垂直土压力σz及土压力集中系数Ks呈正相关,沟谷坡度α与涵顶垂直土压力σz及土压力集中系数Ks呈负相关;(2)沟谷宽度小于5D、沟谷坡度大于45°时,涵顶土压力集中系数Ks较小,涵洞结构受力最有利,高填方涵洞施工应充分利用原有地形地貌,尽可能保留边坡;(3)不同涵型涵顶土压力及沉降变形特性差异较大,在高填方涵洞设计中应掌握不同断面型式涵洞各位置处的受力变形情况以及最不利点位置,综合考虑进行涵洞断面结构型式的合理选型。  相似文献   

10.
为了解双孔钢波纹管涵应用于高填方路基时径向土压力及变形特性,结合依托工程,通过现场试验,并精细化有限元建模方法对其进行分析。结果表明,双孔2-φ5.5 m钢波纹管涵,变形与径向土压力随着填土高度的增加而增大,填土高度达到管顶24 m尚未出现明显土拱效应;径向土压力沿管周分布呈椭圆形,采用双孔管涵,结构受力与单管涵基本相同,最大径向土压力出现位置不同,位于管斜下方45°位置;有限元分析与试验结果相吻合,表明有限元分析模型精度满足工程要求。最后,将公路桥涵规范中土压力计算结果与有限元、测试结果进行对比,规范计算得到的最大土压力偏大,最小土压力偏小。  相似文献   

11.
为考察软基上埋式箱涵受力特性,通过离心模型试验,研究了其竖向和侧向土压力、土压力系数随填土高度变化的规律及周围填土位移场的变化情况.试验结果表明,使用桩基的箱涵与两侧路堤产生了显著的差异沉降,并在涵洞处形成了驼峰;内外土柱差异沉降在路堤中形成了拱脚位于涵顶两侧的上凸压力拱,并使拱脚处竖向土压力集中,且竖向土压力系数随路堤填筑呈开口向下的抛物线分布,在某一涵顶路堤高度下达最大值;同时,随涵顶路堤填筑,涵洞侧向土压力和侧向土压力系数增加,由于涵侧路堤以沉降为主的位移模式与挡土墙后填土不同,涵洞侧向土压力小于现行规范值.软基上路堤、涵洞和地基的协同作用分析表明,传统的强涵基、弱地基的设计理念将使涵顶竖向土压力集中,并导致结构失效.为降低涵洞结构破坏风险,建议采用轻质填料填筑涵顶、涵洞反开挖施工和结构设计考虑涵顶竖向土压力集中等措施.  相似文献   

12.
以包茂高速公路工程为依托,通过现场测试高填方路基下涵洞外界面受力,研究了涵洞受力规律和内在机制。结果表明:涵顶土压力随填土高度增大非线性增加,其中侧墙顶土压力大于填土自重且其增长率随填土增加逐渐减小,涵顶中心土压力在填土达到一定高度后大于填土自重,且其增长率保持稳定;填土完成后,两侧墙顶土压力约为填土自重的2.1~3.0倍,涵顶中部土压力约为填土自重的1.4~1.8倍;侧墙土压力小于静止土压力,实测水平土压力与静止土压力的比值为0.03~0.61;涵洞基底土压力呈不均匀分布,实测基底土压力与涵顶土压力平均  相似文献   

13.
采用有限元方法及模型试验对刚性地基上的上埋式涵洞进行施工模拟,分析方形涵洞和半圆形拱涵施工过程中填土沉降、等沉面及涵顶土压力的变化规律.结果表明:等沉面高度随填土高度的增大而减小,而且涵顶形状影响等沉面高度;涵顶形状不同,涵顶土压力分布和土压力系数变化很大.涵顶填土高度大于10倍涵洞高度时,方涵和半圆拱涵的等沉面高度分别趋近于3.1倍、2.7倍涵洞高度,涵顶土压力系数则分别为1.56、1.26.  相似文献   

14.
通过对3种不同直径及不同壁厚的钢波纹管涵对应不同的填土高度进行有限元计算,得出钢波纹管涵最大等效应力、最大竖向变形随填土高度的变化情况,分析了钢波纹管涵及周边土体的等效应力分布规律。  相似文献   

15.
高填路堤涵洞受力及变形特性有限元分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究高填路堤涵洞的受力及变形特性,建立了有限元计算模型。计算结果与工程实测吻合较好,并研究了涵顶土压力和沉降值的影响因素,得出了涵洞结构、尺寸、涵洞周围填土密实程度、EPS的厚度和宽度对涵顶土压力和沉降值影响的规律。  相似文献   

16.
依托某高填方路基斜跨深切冲沟工程实例,针对不同基础形式的高填土双孔钢波纹管涵的承载特性,通过有限元数值模拟,选取基础圆心角及刚度进行正交对比,分析管涵的应力分布及变形规律。结果表明:双孔钢波纹管涵相互作用、彼此制约,延管涵竖向轴线两侧受力非对称,在靠近相邻管涵一侧应力及变形均小于另一侧。当基础刚度一定,随圆心角θ增大,基础包裹管涵的区域增大,约束作用增强,管涵变形随之减小,应力呈减小趋势且分布更为均匀,有利于管涵承载。当基础圆心角θ一定,刚度改变时,填土约束作用最小,管涵应力整体较大,变形最大,混凝土基础的约束作用最强,管涵变形最小,但易引起局部应力集中,约束作用居中的灰土基础,具有较好的变形协调作用,应力较小且集中现象不明显,管涵变形可控、可知,圆心角θ=180°的灰土基础是较为理想的基础选型。  相似文献   

17.
柔性、高强度的钢波纹管涵洞,不仅具有优良的适应地基与基础变形的能力,而且具有自重轻、运输方便、施工简单、造价低、对地基扰动小等优点,故其具有较为广泛的应用前景。该文通过对高填方钢波纹管涵洞进行野外现场试验,分析钢波纹管涵洞管周和管外各点所受力的大小及变化规律,为今后高填方路基中钢波纹管涵洞施工提供参考资料。通过研究取得以下结论:钢波纹管各点所受土压力随着填土高度升高而增加;在填土高度一样时,管周各点的土压力值不同,其中管周60°处的土压力最大,管中90°处土压力最小;与管顶水平的管外土压力大于管周各测点的土压力,这对于减小钢波纹管在高填方路基回填时的变形有指导作用。  相似文献   

18.
涵洞与填土、地基共同作用机理复杂,由涵洞结构、上覆填土与地基土刚度差异引起的涵顶应力集中往往使涵洞产生各种病害。文中基于填土-涵洞-地基共同作用机制,采用数值仿真软件,通过分析铺设EPS板、地基处理、复合处理(EPS板+地基处理)对涵顶垂直土压力及集中系数的影响,确定不同填高的合理减载方式;通过正交试验设计与分析,得到不同影响因素对涵顶垂直土压力的敏感程度;最后,根据研究结果提出合理的工程建议。研究结果表明:当填土高度H≤12m时,铺设的EPS板厚度h宜小于20cm,反之铺设的EPS板厚度h宜取20~40cm;涵洞地基处理时,当填土高度H≤9m、地基处理宽度L=2~3B(B为涵洞基础宽度),或H12m、L=B时,涵洞地基的刚度可适当增强,反之宜进行柔性地基处理;当填土高度H≤12m时,可通过地基处理或铺设EPS板减弱涵顶应力集中现象,反之宜采用EPS板、复合处理措施,复合处理措施的减载效果最佳;根据正交试验结果分析,不同影响因素对涵顶垂直土压力的敏感程度的大小顺序为EPS板厚度填土高度地基压缩模量地基处理宽度。  相似文献   

19.
钢波纹管涵的最终受力状态不仅与管涵结构设计参数及回填土特性有关,施工措施对结构受力影响较大,为进一步确保结构安全性,采用有限元方法探讨了管内对拉钢索、管顶铺设EPS板对钢波纹管涵施工质量的控制效果。结果表明,管内对拉钢索能有效控制管涵变形,铺设EPS板后管顶土压力仅为管顶上方土体重量的46.85%,质量控制措施效果显著。  相似文献   

20.
上埋式管涵竖向土压力计算方法   总被引:2,自引:1,他引:1  
基于马斯顿理论、曾国熙公式、顾安全公式与有限元法,利用计算机仿真技术模拟地形条件、土性参数建立上埋式管涵模型,并根据工程实际进行算例分析、计算结果表明,竖向土压力集中系数广泛存在于涵洞工程中,尤其在高填土中不容忽视,马斯顿理论和曾国熙公式对高填土不适用,结合顾安全公式和有限元分析,能较为准确地评价分析涵洞受力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号