首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
传统船舶舵机控制系统只适于控制对象是线性系统且时延和阶数等已知的情况,但在实际应用中,船舶舵机控制过程受船舶运行情况和航行环境的影响,属于随机过程.为此,设计一种新的基于神经网络的船舶舵机控制系统,依据功能要求设计船舶舵机的不同控制模型,再设计整体控制系统结构.通过设计4个不同层次的控制器结构,实现神经网络控制器的整体设计,利用神经网络算法对控制器中的参数进行学习和调整,神经网络控制器输出结果即为船舶舵机控制结果.实验结果表明,所设计系统控制效果好,不易受外界环境的干扰.  相似文献   

2.
随着半导体技术的不断发展,集成电路产业以及电力电子器件也随之快速发展。同时,大功率交流调速技术的进步使得船舶电力推进日趋完善,船舶电机控制系统与之相辅相成。灵活化、机动化和高效化的船舶电机控制系统已成为现今行业发展的主要目标。同时,计算机技术及现代控制理论日趋完善,数字控制装置对于船舶电机控制系统来说非常重要。基于DSP的无刷直流伺服电机控制系统已得到广泛关注及应用。  相似文献   

3.
船舶航向自适应控制是船舶控制领域研究的重点,近年来,随着计算机技术的快速发展,一些典型的控制算法被应用于船舶航向控制系统中。滤波反步法是一种以Lyapunov函数为基础的递归设计算法,能够有效提高自适应控制系统的鲁棒性。本文研究船舶运动方程和船舶航向控制理论,在此基础上,设计基于滤波反步法的船舶航向自适应控制器。  相似文献   

4.
薛雁 《船电技术》2005,25(3):49-51
本文以工业以太网和现场总线技术在控制系统中的运用说明了网络技术在控制领域的迅速发展,介绍了网络技术在船舶控制系统中的应用,指出了需要进一步研究和改进的问题.  相似文献   

5.
随着航海技术的发展,人类对海洋的探索也越来越频繁,在不断研究的过程中,人们不仅对船舶的位置有升级的要求,对于其内部动力控制系统的研究范围也在不断的拓宽。本文主要研究船舶动力定位系统的构成原理,并结合神经网络算法对船舶动力定位关键技术进行数学建模。最后在Matlab仿真系统中建立船舶动力控制系统在海洋环境中的实际干扰模型,并从静态角度对小波神经算法的性能进行分析与仿真,仿真结果表明此算法的控制效果良好。  相似文献   

6.
重点研究单片机技术,并且将其应用于船舶水密门控制系统。首先设计控制系统的架构,并对每层进行了阐述;然后介绍船舶水密门控制系统的结构构成和工作原理,通过高自动化控制系统实现船舶水密门的关开控制,保持船舶的航行安全;最后以船舶水密门温度控制为例来说明,单片机技术控制的有效性。  相似文献   

7.
传统船舶舵机控制系统只适于控制对象是线性系统且时延和阶数等已知的情况,但在实际应用中,船舶舵机控制过程受船舶运行情况和航行环境的影响,属于随机过程。为此,设计一种新的基于神经网络的船舶舵机控制系统,依据功能要求设计船舶舵机的不同控制模型,再设计整体控制系统结构。通过设计4个不同层次的控制器结构,实现神经网络控制器的整体设计,利用神经网络算法对控制器中的参数进行学习和调整,神经网络控制器输出结果即为船舶舵机控制结果。实验结果表明,所设计系统控制效果好,不易受外界环境的干扰。  相似文献   

8.
高鑫  陆振军 《中国修船》2013,26(1):38-40,43
海上运输船舶为了储存食品,一般设有伙食冷库及相应的制冷装置。文章在充分分析和研究船舶伙食制冷控制系统的基础上,设计了一套采用可编程控制器作为控制核心的伙食冷库制冷控制系统。  相似文献   

9.
基于非线性控制理论的船舶动力定位控制系统的数学模型   总被引:1,自引:0,他引:1  
考虑到船舶的动态特性存在固有的强非线性以及非线性控制改善系统性能和鲁棒性的能力,将非线性控制理论应用到船舶动力定位控制系统的设计中,对某供应船的计算机模型进行仿真,仿真分析表明非线性控制系统是有效的.  相似文献   

10.
当前的船舶电子控制系统控制过程高度集中,如果其中某一部件损坏,很可能导致整个控制系统无法正常运行,提出一种基于嵌入式的船舶电子控制系统设计方法,按照的功能要求对舰船电子控制系统进行模块划分,并对系统的各个功能模块结构进行设计;为了改善当前方法设计的控制系统灵活性较差和工作效率较低的问题,对船舶电子控制系统的驱动、电源、视频、测距、控制中心等进行模块化功能设计;选取实时性较强的VxWorks嵌入式操作系统作为舰船电子控制系统的主控制系统,测试结果表明:设计的控制系统实现了驱动功能和控制功能的模块化,能够保障船舶相关工作的顺利进行。  相似文献   

11.
随着船舶工业的发展,海上交通航线的船舶密度越来越大,船舶的航行速度也越来越快,这些都对船舶的转向等操纵性能提出了很高的要求。船舶舵机是控制船舶转向、航线调节的重要设备,不仅决定了船舶的操纵性能,还与船舶航行安全息息相关。通常,船舶舵机的核心部件是液力耦合器,液力耦合器的液压控制系统决定了舵机的控制精度。本文首先对船舵的工作原理进行介绍,然后对船舵液力耦合器的液压系统进行分析,并在传统液压控制系统的基础上设计了一种新的控制系统,并完成了该控制系统的控制精度仿真。  相似文献   

12.
韩中建 《机电设备》2020,37(1):53-56
随着船舶自动化和智能化的不断发展,船舶供水系统对控制系统将提出更高的要求。相对于P L C变频供水控制系统而言,嵌入式变频供水控制系统具有成本低廉、功耗低、体积小和扩展灵活等特点。文章设计了一套嵌入式船用变频器供水控制系统,具有液晶屏手动和变频控制、本地控制、恒压设定、运行数据监测等功能。该系统经实验室安装测试后基本达到预期功能,为后续进一步优化设计奠定了坚实的基础。  相似文献   

13.
张锦林 《船艇》1991,(3):17-18
目前,丹麦开展了“未来船舶”的课题研究。该课题的一个主要部份是由Soten TLgngso(STL)公司研制一台综合船舶控制系统(ISC)。据STL公司介绍,根据海岸、海上和码头上一人桥楼操作的要求,他们必须研究一种新的理论来控制船舶。因而导致研制  相似文献   

14.
根据国内船舶自动化产业的现状和造船行业的发展形势,分析了研发船舶综合控制系统的重要性;介绍了船舶控制系统的组成以及传统控制方案的不足;然后,提出并分析了基于分布式控制单元的控制系统设计方案。最后,基于中控WebField ECS-100控制系统,实现了船舶综合控制的模拟仿真系统,试验结果表明了该方案的可行性和有效性。  相似文献   

15.
伺服电机的控制对于船舶航行的安全稳定非常重要。为提高船舶伺服电机控制系统的性能,采用嵌入式单片机作为核心处理器,并给出电机控制系统硬件设计方案和嵌入式软件控制功能的设计,对于进一步发展具有高速实时控制功能的电机控制系统具有一定的借鉴意义。通过测试表明控制系统简化了电路设计,提高了保护的可靠性以及运行速度,通过测试证明控制系统的可行性,为设计提供了可靠依据。  相似文献   

16.
在研究PID神经网络控制方案的基础上,提出一种基于自适应PID神经网络的船舶航向控制方案,以对其进行辨识和控制.将自适应PID神经网络引入船舶的航向控制系统中,既具有常规PID控制结构简单、参数物理意义明确等优点,同时又具有神经网络的并行结构和学习记忆功能及非线性映射能力.仿真结果表明,该控制系统响应速度快、超调量小、稳态精度高,能够快速跟踪设定航向并进行有效控制,且具有自适应性和一定的鲁棒性,满足实时控制的要求.  相似文献   

17.
一直以来,船舶电力推进系统的控制都是研究的重点。为了获得良好的控制性能,降低设备成本,嵌入式控制系统逐渐进入了人们的视野。由于集成电路产业的快速发展,基于ARM与DSP的控制系统已经在工业控制领域获得了非常广泛的应用。本文首先研究船舶电力推进系统的控制需求,对推进负载和电机的控制系统建立精确的控制模型,在此基础上设计出基于TMS320VC5470控制器的嵌入式船舶电力推进仿真系统,给出双核通信软件的设计流程和计算机控制界面。  相似文献   

18.
随着海洋经济的快速崛起,越来越多的船舶需要在非常恶劣的环境中行驶,但是由于船舶的吨位和体积有很大的不同,必须使船舶的主动控制系统尽可能满足不同的航行要求,因此本文主要研究了船舶主动式波浪补偿控制系统,能够在一定程度上帮助船舶克服各种恶劣的海洋环境,保证船舶的航行安全,文中结合了船舶控制系统的特点,设计了基于PID的模糊控制算法,在简化控制步骤的同时,还可以进一步降低控制成本,有利于后期的推广应用。  相似文献   

19.
陆健 《船舶》2019,30(1):64-68
船舶营运的过程中需要借助于对管系中的阀门进行开、闭控制,来实现船舶正常姿态和货物正常装卸,如果阀门控制发生故障,将对人员生命安全和船舶正常营运产生重大影响。为此,开发了船用阀门遥控控制系统,根据船舶规范及船舶自动化的要求设计出基于组态软件和PLC的控制系统,编写了相应的PLC程序和人机界面程序。  相似文献   

20.
现有船舶动力推进装置普遍采用调距桨作为动力推进发生装置,在动力发生过程中需要对应的动力电机控制参数控制,才能使调距桨产生最大的推进力。但是,现有的推进控制系统在对动力电机控制上无法匹配对应参数。导致推进控制力降低,电机供电转数失常,影响船舶的动力输送。因此提出基于单片机的船舶调距桨自动推进控制系统研究。通过创建基于单片机的动力控制硬件,对传统控制硬件进行更新;再通过引入自适应推进算法,实现动力电机参数的自动调整控制效果。最后,通过对比实验证明提出设计系统的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号