首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 748 毫秒
1.
铜陵公铁两用长江大桥主桥为(90+240+630+240+90)m五跨连续钢桁梁斜拉桥,主梁采用双节间全焊桁片组拼钢桁梁结构。结合桥址处水文地理条件,对南岸边跨钢梁全顶推和双悬臂架设方案比选,确定南岸边跨采用全顶推方案。顶推施工方案为在边跨设置3处墩旁托架、2个临时墩,采用1 000t浮吊于4号墩墩旁托架主跨侧拼装30m导梁、边跨A0A5节段钢梁及架梁吊机,A6A24节段钢梁经架梁吊机起吊拼装后向边跨顶推架设。墩旁托架及临时墩立柱采用?1 400mm×22mm和?1 020mm×10mm两种规格钢管,在墩旁托架顶端设置对拉钢绞线,联结系采用?630mm×8mm和?426mm×6mm钢管;导梁采用三片桁结构,桁高和梁宽均与主梁相同;水平顶推设备为4台350t连续千斤顶,布置于4号墩墩旁托架边跨侧外立柱顶部。有限元计算及实践结果表明钢梁顶推过程中钢梁位移和应力满足要求。  相似文献   

2.
无锡金匮大桥钢梁安装技术   总被引:1,自引:1,他引:0  
无锡金匮大桥主桥为(55+105+55)m的三跨连续钢桁梁桥,该桥采用2片主桁结构,桥面系采用整体钢箱梁结构,钢箱梁宽30 m,最大节段长14 m,重约230 t。该桥钢梁采用架桥机由两端边跨向中跨对称架设、中跨合龙的方法安装。边跨钢梁在支架上安装,利用汽车吊安装陆上钢梁,架桥机将钢梁吊至滑道上并滑移至安装位置,并利用三向千斤顶进行调整定位。中跨钢梁采用架桥机逐段悬臂拼装施工,同时在边跨进行平衡压载。跨中合龙采用千斤顶调整边支点高差,调整合龙口误差的强制合龙施工工艺。  相似文献   

3.
南京大胜关长江大桥钢梁架设及关键技术   总被引:3,自引:1,他引:2  
京沪高速铁路南京大胜关长江大桥钢梁孔跨布置为2联(84+84) m连续钢桁梁和(108+192+336+336+192+108) m六跨连续钢桁拱.钢梁采用3片主桁结构,结构体系新,技术标准高,架设难度大.采用钢梁双悬臂架设、多点跨中合龙的技术.主跨钢梁采用双悬臂架设,主墩墩旁托架和钢梁临时固结,6号、8号主墩设吊索塔架,7号主墩钢梁设临时平索,钢梁先两侧192 m边跨合龙,再两孔336 m主跨合龙.介绍钢梁架设的关键技术和主要架设过程.  相似文献   

4.
铜陵公铁两用长江大桥主桥为630m五跨连续钢桁梁斜拉桥,采用三主桁三索面结构型式。3片主桁均由全焊桁片拼装而成。通过对备选方案的研究和比选,铜陵岸钢梁架设采用"边跨全顶推法架设+中跨悬臂法架设"方案,无为岸钢梁架设采用"边跨部分拖拉法架设+中跨悬臂法架设"方案,中跨合龙采用"桁片整体合龙"方案。在4号桥塔墩设置顶推平台和顶推装置,将铜陵岸边跨和次边跨钢梁分段安装、分次顶推至全部就位,然后将中跨钢梁悬臂架设至合龙口;在2号墩前方设置安装平台、1号墩墩顶布置拖拉装置,将无为岸边跨和部分次边跨钢梁分段安装、分次拖拉至全部就位,然后将3号墩前后两侧钢梁双悬臂架设至边跨合龙,再将剩余中跨钢梁单悬臂架设至跨中合龙口;最后吊装合龙段桁片进行中跨合龙。  相似文献   

5.
重庆粉房湾长江大桥主桥为跨度(216.5+464+216.5)m的双塔双索面半飘浮体系钢桁梁斜拉桥,主梁采用钢桁梁结构.钢桁梁采取散拼架设,南、北岸钢桁梁根据地形情况选取了不对称的方式施工.南岸钢桁梁由边跨向中跨架设,边跨钢桁梁采用支架拼装,先架设中间桁架,再利用桥面汽车吊架设边纵梁、边桥面板等构件;主跨钢桁梁采用悬臂拼装.北岸钢桁梁采用双悬臂对称架设,主墩墩顶及两侧共5个节段钢桁梁采用墩旁托架拼装.  相似文献   

6.
渝黔铁路新白沙沱长江特大桥为双层6线铁路钢桁梁斜拉桥,主桥桥跨布置为(81+162+432+162+81)m。主梁采用N形桁架,2片主桁,全桥钢梁总重约4.1万吨,共68个节间,其中重庆侧边跨4个节间钢梁跨越3条铁路线。为顺利跨越既有铁路线,重庆侧钢梁采用"部分顶推+散拼"的架设方案施工,在2号墩主跨侧的支架上一次性拼装完成,分多次请点将7.5个节间钢梁顶推过既有铁路线,剩余节间钢梁采用支架散拼法架设;贵阳侧钢梁采用双悬臂方案架设,在单侧墩旁托架上利用70t架梁吊机架设3号墩墩顶6个节间钢梁后,利用2台70t架梁吊机对称悬臂架设其余节间钢梁;主跨跨中采用适配法合龙。  相似文献   

7.
渝黔铁路新白沙沱长江特大桥为双层6线铁路钢桁梁斜拉桥,主桥桥跨布置为(81+162+432+162+81)m,主梁采用N形桁架,2片主桁,全桥钢桁梁共68个节间,其中重庆侧边跨4个节间钢桁梁跨越3条铁路线。为减少对既有线运营的影响,提出跨既有线钢桁梁采用双悬臂架设(方案1)和局部无导梁顶推与散拼相结合(方案2)2种方案施工,通过工期、安全及经济性等方面的比选,采用方案2。跨既有线钢桁梁采用无导梁顶推施工,在主墩旁支架上利用架梁吊机拼装钢桁梁,利用纵向千斤顶分3次将钢桁梁顶推跨越既有线;边跨其余节间采用膺架法散拼施工。  相似文献   

8.
冯传宝 《桥梁建设》2020,50(1):99-104
五峰山长江大桥主桥为主跨1092 m的钢桁梁公铁两用悬索桥,加劲梁采用板桁结合钢桁梁,主缆采用预制平行高强钢丝索股结构,直径1.3 m。边跨加劲梁采用支架顶推法施工,中跨加劲梁采用缆载吊机由跨中向两侧对称架设,并在中跨侧靠近桥塔位置处合龙;主缆采用平行钢丝索股法架设。主缆制造时,采用无应力长度法计算各索股的无应力下料长度,并在主缆锚固区每处预留长度为±26 cm的垫板空间;主缆架设时,采用4根索股作为基准索股进行架设线形控制,并将主缆长度误差控制在-18~30 cm,均在误差控制范围内;加劲梁施工时,通过分析各因素对加劲梁线形的影响规律,提出控制二期恒载的措施;加劲梁合龙时,采取中跨钢梁不动、起顶边跨钢梁的合龙控制措施;在加劲梁合龙后加载二期恒载。加劲梁合龙后标高误差为-5^+63 mm,线形控制较好。  相似文献   

9.
连续刚构桥的常规合拢顺序为先边跨合拢,然后次边跨合拢,最后中跨合拢。本文研究针对某高速公路上的一座主桥为5跨连续刚构桥采用的先同时合拢边跨(第1、5跨)——再合拢一侧次边跨(第2跨)——最后同时合拢中跨(第3跨)和另一侧次边跨(第4跨)的比较特殊的合拢顺序,建立反映其非常规合拢顺序的有限元数值模型,并对其进行计算。非常规合拢顺序和常规合拢顺序有限元对比分析发现,成桥后和成桥10 a后2个工况下,桥梁的线型、顺桥向上下缘截面最大正应力和墩顶位移以及墩底截面竖直向最大正应力差别非常小;在有效的施工控制下,2种合拢顺序都能满足设计和使用要求。  相似文献   

10.
廊坊光明桥为(118+268+118) m上加劲连续钢桁梁桥,上跨多股既有线,与既有京沪高铁交角33°。钢桁梁采用转体法施工,拼装跨度为京沪高铁侧(119+138) m、西牵出线侧(130+119) m,采用带辅助滑道的简支梁体系非对称转体方案。施工过程中,与铁路平行位置采用独柱式拼装支架和带转向功能的龙门吊拼装钢桁梁,京沪高铁侧钢桁梁远离设计转体位置15 m进行拼装,西牵出线侧钢桁梁向边跨预偏30 cm拼装;京沪高铁侧钢桁梁拼装完成后横移至设计转体位置;钢桁梁同步落梁至主墩;采用带大悬臂的简支梁体系进行转体,辅助滑道采用轴承式滚动走行系统;转体后,西牵出线侧钢桁梁利用墩顶特殊设计的永久支座向跨中纵向顶推30 cm;在铁路限界上方采用全封闭防护小车进行合龙施工。该桥多次体系转换施工累积误差可控,成桥精度与设计吻合,确保了高铁运营安全。  相似文献   

11.
姚发海 《桥梁建设》2007,(6):6-8,19
武汉天兴洲公铁两用长江大桥主桥为双塔三索面斜拉桥,主梁为板桁结合钢桁梁,3片主桁,采用整体节段架设施工。对钢桁梁整体节段架设的可行性进行分析。  相似文献   

12.
武汉天兴洲公铁两用长江大桥主桥钢梁设计   总被引:2,自引:2,他引:0  
徐伟 《桥梁建设》2008,(1):4-7,22
武汉天兴洲公铁两用长江大桥主桥为双塔三索面钢桁梁斜拉桥,首次采用了3片主桁、三索面的结构形式.该桥设计中研究确定了铁路多线荷载加载等新技术.介绍该桥钢梁的设计要点、结构设计及主要专题研究项目.  相似文献   

13.
肖容 《城市道桥与防洪》2021,(6):238-241,269
为研究横向构件布置与截面设计对3主桁受力均衡性的影响,以宁波市三官堂大桥主桥160m+465m+160 m=785 m的大跨径钢桁架连续梁桥为例,采用Midas/Civil软件建立钢桁架梁模型,分析比较对称荷载与偏载作用下主桁结构支反力、轴力和位移等静力效应,得出了3主桁连续钢桁梁桥的内力分布特性.  相似文献   

14.
龙皓 《桥梁建设》2007,(A01):58-61
新长铁路第十七合同段京杭大运河特大桥主跨为80m下承式单线铁路钢桁梁。从理论计算到实际拼装及操作过程详细地介绍了浮运法架设铁路80m钢桁梁的方法,总结了该方法使用的环境条件。  相似文献   

15.
东新赣江特大桥钢桁梁架设施工技术   总被引:3,自引:3,他引:0  
东新赣江特大桥主桥为变截面双主桁连续钢桁梁桥,跨径布置为(126+196+126)m,主桁采用N形上弦变高桁式。为确保主桥钢桁梁准确定位,针对钢桁梁结构特点,在陆地上设置钢梁预拼场组拼杆件,在水上采用浮吊架设,采取膺架与悬臂法拼装相结合的方案,由两端边跨向主跨拼装,采用边墩顶落梁,并结合顶拉钢桁梁纵移的方法进行合龙。通过调整上下弦横向偏移、高差、纵向偏移等技术使钢桁梁中线偏位、主桁高差、钢梁竖向线形等均得到较好控制,实现钢桁梁高精度合龙。  相似文献   

16.
四渡河大桥钢桁梁节点板局部应力分析   总被引:1,自引:0,他引:1  
四渡河大桥主桥为单跨900 m双铰钢桁梁悬索桥.主桥加劲钢桁梁的节点板处构造及受力均较复杂,采用通用有限元软件对代表性的节点板处局部应力进行空间分析,为设计提供了参考.  相似文献   

17.
东莞东江大桥钢桁梁合龙技术   总被引:1,自引:1,他引:0  
东莞东江大桥主桥为双层刚性悬索三桁加劲连续钢桁梁公路桥,跨径布置为(112+208+112)m,三桁整体受力。大桥分2次合龙(平弦合龙和加劲弦合龙),为解决合龙位置杆件偏差问题,结合该桥的工程特点,提出利用墩顶临时支承起顶装置、温差法及主墩墩顶临时纵向顶推装置的解决措施。采用结构分析软件,建立全桥有限元计算分析模型,通过对合龙工况的分析,确定了起顶位置及起顶高度,分别实现大桥平弦及加劲弦合龙。实践证明,大桥顺利合龙且各项指标均满足设计要求。  相似文献   

18.
结合钢桁梁正交异性钢桥面板体系研究   总被引:1,自引:1,他引:0  
为研究结合钢桁梁正交异性钢桥面板体系(纵横梁体系、横梁体系、纵梁体系)受力性能的差别,以闵浦大桥为例,采用MIDAS Civil软件建立3种结构体系的主跨桁架局部空间模型进行有限元计算分析,得到如下结论:纵梁体系不适合于结合钢桁梁正交异性钢桥面板结构;横梁体系结构比纵横梁体系受力不利;纵横梁体系在获得足够的净空的同时不至于使整个桁架很高,桥面板受力合理,是最适用于结合钢桁梁的正交异性钢桥面板体系.  相似文献   

19.
128m双线铁路简支钢桁梁桥设计   总被引:2,自引:0,他引:2  
任万敏  朱敏  袁明 《桥梁建设》2012,42(1):79-83
赵寨颖河双线特大桥主桥为128 m下承式简支钢桁梁桥.主桁采用带竖杆的三角形腹杆体系;主桁弦杆均采用箱形截面,内力较大的腹杆采用箱形截面,内力较小的腹杆采用H形截面;在上弦杆平面内设置交叉式上平纵联;采用密横梁整体正交异性板有砟桥面系.该桥采用在岸边临时支架上拼装钢桁梁及导梁,在河中设置2个临时支墩的半悬臂拖拉法施工.采用MIDASCivil 2006建立主梁三维有限元模型,计算主梁杆件内力及位移、预拱度、自振特性,计算结果表明该桥设计合理,满足规范要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号