首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper explores the experimental investigation of the performance, emission and combustion characteristics of bio fuels from ceiba pentandra methyl ester (CPME), ceiba pentandra methyl ester-pine oil blends (CPMEP) and pine oil and the results are compared with diesel. In ceiba pentandra seed oil the CPME yield is 92% by using transesterification process with the optimum conditions of 560 rpm, reaction time 58 min, catalyst concentration 13 g and methanol amount 500 ml. The viscosity of CPME is high when compare with diesel. So the low viscosity of pine oil is blended with CPME and it can be directly used in diesel engine without any modification. At different loads the Pine oil, CPME and CPMEP blends were used in direct injection naturally aspirated compression ignition engine. The outcomes exhibited that at full load conditions for CPME and CPMEP blends increased brake specific fuel consumption, and decreased brake thermal efficiency, CO, HC emissions. NOx emissions decreased and smoke emissions are increased on CPME and CPMEP blends, expect B25 blend compared with diesel. The combustion analysis like the heat release rate, peak cylinder pressure, cumulative heat release rate and ignition delay for CPME, CPMEP blends slightly lower and combustion duration higher than diesel and pine oil. At the Same engine operating condition, the engine fuelled with pine oil the values of brake thermal efficiency 4.79%, peak cylinder pressure, heat release rate, cumulative heat release rate and ignition delay are increased. Brake specific fuel consumption, CO, HC, and smoke were 9.46%, 16.66%, 14.89% and 8.33% decreased. However, the NOx emission is 8.29% higher than that of diesel. Experimental fuels up to B50 (50% pine oil and 50% CPME) blends have proved good potential for future energy is needed.  相似文献   

2.
In this study, diesel (JIS#2) and various biodiesel fuels (BDF20, BDF50, BDF100) are used to operate the diesel engine at 100 Nm, 200 Nm and full load; while the engine speed is 1800 rpm. The system is experimentally studied, and the energy, exergy, sustainability, thermoeconomic and exergoeconomic analyses are performed to the system. The Engine Exhaust Particle Sizer is used to measure the size distribution of engine exhaust particle emissions. Also, the data of the exhaust emissions, soot, particle numbers, fuel consumptions, etc. are measured. It is found that (i) most of the exhaust emissions (except NOx) are directly proportional to the engine load, (ii) maximum CO2 and NOx emissions rates are generally determined for the BDF100 biodiesel fuel; while the minimum ones are calculated for the JIS#2 diesel fuel. On the other hand, the maximum CO and HC emissions rates are generally computed for the JIS#2 diesel fuel; while the minimum ones are found for the BDF100 biodiesel fuel, (iii) fuel consumptions from maximum to minimum are BDF100 > BDF50 > BDF20 > JIS#2 at all of the engine loads, (iv) particle concentration of the JIS#2 diesel fuel is higher than the biodiesel fuels, (v) soot concentrations of the JIS#2, BDF20 and BDF50 fuels are directly proportional to the engine load; while the BDF100 is inversely proportional, (vi) system has better energy and exergy efficiency when the engine is operated with the biodiesel fuels (vii) sustainability of the fuels are BDF100 > BDF50 > BDF20 > JIS#2, (viii) thermoeconomic and exergoeconomic parameters rates from maximum to minimum are JIS#2 > BDF20 > BDF50 > BDF100.  相似文献   

3.
The energy crisis is due to two reasons, one is the rapid increase in worldwide population and the other is changing living style of human beings. The fossil fuel is also a major contributor to add the harmful pollutants into the atmosphere. Fuel modifications play a major role in increasing engine efficiency and reducing emissions. In the present investigation focused on fuel modifications in diesel engine. Initially the single cylinder diesel engine was operated with 20MEOM, 40MEOM, 60MEOM, 8MEOM and 100MEOM without additives with diesel at different loads at constant rated speed. From the experimental study proved that 20MEOM is the best fuel ratio compared to other blends. In second phase based upon first phase results the engine was operated 20MEOM blended fuel with adding 50 ppm copper oxide nano additives with diesel using solgel process. From the results, the brake thermal efficiency was 2.19% improved compared than 20MEOM blend without additive at full load condition. Emissions of HC, CO and smoke were considerably reduced. The present analysis reveals that the biofuel from mahua oil with nano additives is quite suitable as an alternate fuel for diesel engine.  相似文献   

4.
This article highlights eco-driving as an available policy option to reduce climate altering GHG emissions. Recognizing the need to reduce the environmental impact of its fleet operations, the City of Calgary is a leader in developing programs and policies that aim to reduce GHG emissions and associated pollutants resulting from the use of fossil fuels. Among local action taken against climate change, the City sought to quantify CO2 emissions reductions from their municipal fleet as a result of eco-driver training, with a specific focus on engine idling. Fifteen drivers from the Development & Building Approvals Business Unit had in-vehicle monitoring technology (CarChips®) installed into their vehicles as part of a three-phase research process. The results show that gasoline and hybrid vehicles decreased average idling between 4% and 10% per vehicle per day, leading to an average emissions decrease of 1.7 kg of CO2 per vehicle per day.  相似文献   

5.
Discrepancies between real-world use of vehicles and certification cycles are a known issue. This paper presents an analysis of vehicle fuel consumption and pollutant emissions of the European certification cycle (NEDC) and the proposed worldwide harmonized light vehicles test procedure (WLTP) Class 3 cycle using data collected on-road. Sixteen light duty vehicles equipped with different propulsion technologies (spark-ignition engine, compression-ignition engine, parallel hybrid and full hybrid) were monitored using a portable emission measurement system under real-world driving conditions. The on-road data obtained, combined with the Vehicle Specific Power (VSP) methodology, was used to recreate the dynamic conditions of the NEDC and WLTP Class 3 cycle. Individual vehicle certification values of fuel consumption, CO2, HC and NOx emissions were compared with test cycle estimates based on road measurements. The fuel consumption calculated from on-road data is, on average, 23.9% and 16.3% higher than certification values for the recreated NEDC and WLTP Class 3 cycle, respectively. Estimated HC emissions are lower in gasoline and hybrid vehicles than certification values. Diesel vehicles present higher estimated NOx emissions compared to current certification values (322% and 326% higher for NOx and 244% and 247% higher for HC + NOx for NEDC and WLTP Class 3 cycle, respectively).  相似文献   

6.
Algae are organisms that grow in marine environments and use carbon dioxide and light to create bio-mass. There are two groupings of algae: microalgae and macroalgae. Macroalgae are the large, multi-cellular algae often seen growing in ponds. Microalgae, on the other hand, are tiny, unicellular algae that normally grow in suspension within a body of water. Algae oil from microalgae has the possible to become a sustainable fuel source as biodiesel. Microalgae are produced through photosynthesis by utilizing sunlight, water, carbon dioxide and other nutrients. The Botryococcus braunii algal oil was extracted by mechanical extraction method. The transesterification reaction of Botryococcus braunii algal oil with methanol and base catalyst was used for the production of biodiesel. The samples B20 were prepared for each methyl ester obtained from Botryococcus braunii algal oil separately and then the doping of TiO2 and SiO2 nanoparticles were added to the each B20 blend samples at a dosage of 50 ppm and 100 ppm with an aid of ultrasonicator. Moreover, in the absence of any engine modifications, the performance and emission characteristics of those blend samples have been investigated from the experimentally measured values such as density, viscosity, calorific value, etc. while the engine performance was also analyzed through the parameters like BSFC, BTH, exhaust emission of CO, HC, NOx and CO2. The experimental results reveal that the use of biodiesel blend with nano additives in diesel engine has exhibited good improvement in performance characteristic and reduction in exhaust emissions.  相似文献   

7.
This work presents the preparation of aluminum (Al) 6061 nano hybrid composite samples reinforced with equal weight percentage of nano-ZrO2, micro-SiC, micro-Gr particles of 0%, 0.75%, 1.5%, 2.25%, and 3% using stir casting method. Friction characteristics of the composite samples under reciprocating conditions were studied at 125 °C using L27 orthogonal array and Taguchi method. The results of analysis of variance showed the influencing parameter for friction coefficient in the order of applied load and reciprocating sliding speed, followed by sliding distance and percent reinforcement. Hence, the total combined reinforcement sample of 6.75% was found to be optimum in terms of frictional characteristics and tensile strength. It was selected to synthesize lightweight nano hybrid composite cylinder liner (NL) and to replace the present cast iron cylinder liner (CL) used in biodiesel engine application. The developed NL had a 43.75% reduced weight than the currently used CL. Neat diesel and biodiesel from Jatropha oil and its diesel blends were used as test fuels. Experimental results proved that NL improved brake thermal efficiency, in-cylinder pressure, heat release rate and reduced carbon monoxide, hydrocarbon, and smoke emission in comparison with the existing liner. The results also showed that emission of the oxides of nitrogen (NOx) increased marginally with the new liner. Thus, the newly developed NL was found suitable for both diesel- and biodiesel-operated internal combustion engines.  相似文献   

8.
CO, CO2, NOx and HC emissions of two stroke-powered tricycles in Metro Manila are examined using an instantaneous emissions model. Results show that fuel consumption and HC emissions in middle class residential areas and main roads are similar but lower than levels in low income residential areas. On the average, tricycles in Metro Manila consume 24.41 km/l of fuel and produces 9.5, 9.7, 40.5 and 0.07 g/km of HC, CO, CO2 and NOx, respectively. They fail to satisfy HC, CO and NOx emission limits set by reference standards in the Philippines and other Asian countries. They produce greater HC and CO emissions than gasoline fueled private cars and diesel powered public jeepneys, taxis and buses on a per passenger-km basis but significantly lower NOx emissions. Tricycles account for 15.4% of the total HC emissions from mobile sources in the metropolis while their contributions to CO, CO2 and NOx are minimal.  相似文献   

9.
Vehicles are considered to be an important source of ammonia (NH3) and isocyanic acid (HNCO). HNCO and NH3 have been shown to be toxic compounds. Moreover, NH3 is also a precursor in the formation of atmospheric secondary aerosols. For that reason, real-time vehicular emissions from a series of Euro 5 and Euro 6 light-duty vehicles, including spark ignition (gasoline and flex-fuel), compression ignition (diesel) and a plug-in electric hybrid, were investigated at 23 and −7 °C over the new World harmonized Light-duty vehicle Test Cycle (WLTC) in the Vehicle Emission Laboratory at the European Commission Joint Research Centre Ispra, Italy. The median HNCO emissions obtained for the studied fleet over the WLTC were 1.4 mg km−1 at 23 °C and 6 mg km−1 at −7 °C. The fleet median NH3 emission factors were 10 mg km−1 and 21 mg km−1 at 23 and −7 °C, respectively. The obtained results show that even though three-way catalyst (TWC), selective catalytic reduction (SCR), and NOx storage catalyst (NSC) are effective systems to reduce NOx vehicular emissions, they also lead to considerable emissions of the byproducts NH3 and/or HNCO. It is also shown that diesel light-duty vehicles equipped with SCR can present NH3 emission factors as high as gasoline light-duty vehicles at both, 23 and −7 °C over the WLTC. Therefore, with the introduction in the market of this DeNOx technology, vehicular NH3 emissions will increase further.  相似文献   

10.
In 2016, the International Maritime Organization (IMO) decided on global regulations to reduce sulphur emissions to air from maritime shipping starting 2020. The regulation implies that ships can continue to use residual fuels with a high sulphur content, such as heavy fuel oil (HFO), if they employ scrubbers to desulphurise the exhaust gases. Alternatively, they can use fuels with less than 0.5% sulphur, such as desulphurised HFO, distillates (diesel) or liquefied natural gas (LNG). The options of lighter fuels and desulphurisation entail costs, including higher energy consumption at refineries, and the present study identifies and compares compliance options as a function of ship type and operational patterns.The results indicate distillates as an attractive option for smaller vessels, while scrubbers will be an attractive option for larger vessels. For all vessels, apart from the largest fuel consumers, residual fuels desulphurised to less than 0.5% sulphur are also a competing abatement option. Moreover, we analyse the interaction between global SOX reductions and CO2 (and fuel consumption), and the results indicate that the higher fuel cost for distillates will motivate shippers to lower speeds, which will offset the increased CO2 emissions at the refineries. Scrubbers, in contrast, will raise speeds and CO2 emissions.  相似文献   

11.
On-board real-time emission experiments were conducted on 78 light-duty vehicles in Bogota. Direct emissions of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and hydrocarbons (HC) were measured. The relationship between such emissions and vehicle specific power (VSP) was established. The experimental matrix included both gasoline-powered and retrofit dual fuel (gasoline–natural gas) vehicles. The results confirm that VSP is an appropriate metric to obtain correlations between driving patterns and air pollutant emissions. Ninety-five percent of the time vehicles in Bogota operate in a VSP between −15.2 and 17.7 kW ton−1, and 50% of the time they operate between −2.9 and 1.2 kW ton−1, representing low engine-load and near-idling conditions, respectively. When engines are subjected to higher loads, pollutant emissions increase significantly. This demonstrates the relevance of reviewing smog check programs and command-and-control measures in Latin America, which are widely based on static (i.e., idling) emissions testing. The effect of different driving patterns on the city’s emissions inventory was determined using VSP and numerical simulations. For example, improving vehicle flow and reducing sudden and frequent accelerations could curb annual emissions in Bogota by up to 12% for CO2, 13% for CO and HC, and 24% for NOx. This also represents possible fuel consumption savings of between 35 and 85 million gallons per year and total potential economic benefits of up to 1400 million dollars per year.  相似文献   

12.
Detailed NOx, SO2 and PM2.5 emissions have been estimated for cruise ships in the five busiest Greek ports (i.e. Piraeus, Santorini, Mykonos, Corfu and Katakolo) for year 2013. The emissions were analyzed in terms of gas species, seasonality and activity. The total in-port inventory of cruise shipping accounted to 2742.7 tons: with NOx being dominant (1887.5 tons), followed by SO2 and PM2.5 (760.9 and 94.3 tons respectively). Emissions during hotelling corresponded to 88.5% of total and have significantly outweighed those produced during ships’ maneuvering activities (11.5% of total). Seasonality was found to play a major role, as summer emissions and associated impacts were significantly augmented. The anticipated health impacts of ship emissions can reach to €24.3 million or to €5.3 per passenger proving the necessity of control of the emissions produced by cruise ships in port cities or policy and measures towards a more efficient cruise industry.  相似文献   

13.
NOX emission rates of 13 petrol and 3 diesel passenger cars as a function of average speed from 10 to 120 km/h, emission class (pre-Euro 1 – Euro 5), engine type were investigated by on-board monitoring on roads and highways of St. Petersburg using a portative Testo XXL 300 gas analyzer. The highest level of NOX emission 0.5–2.5 g/km was inherent to old pre-Euro 1 petrol cars without a catalytic converter. NOX emissions rates of Euro 1 and Euro 2 petrol cars changed within 0.15–0.9 g/km, Euro 3 – 0.015–0.27 g/km, Euro 4 – 0.013–0.1 g/km, Euro 5 – 0.002–0.043 g/km. Euro 3 – Euro 4 petrol cars generally satisfied corresponding NOX Emission Standards (ES), except cold-start period, Euro 5 petrol cars did not exceed ES. Warmed, stabilized engines of Euro 3 – Euro 5 petrol cars showed 5–10 times lower NOX emission rates than corresponding ES in the range of speed from 20 to 90 km/h. NOX emission rates of diesel Euro 3 and Euro 4 cars varied from 0.45 to 1.1 g/km and from 0.31 to 1.1 g/km, respectively. Two examined diesel Euro 3 and one Euro 4 passenger vehicles did not satisfy NOX ES at real use. Euro 3 diesel cars showed 28.9 times higher NOX emissions than Euro 3 petrol cars and Euro 4 diesel car demonstrated 17.6 times higher NOX emissions than Euro 4 petrol cars at warmed and stabilized engine at a cruise speed ranging from 30 to 60 km/h.  相似文献   

14.
This paper examines the influence of compressed natural gas, liquefied petroleum gas and gasoline fuel on the exhaust emissions and the fuel consumption of a spark-ignition engine powered passenger car. The vehicle was driven according to the urban driving cycle and extra urban driving cycle speed profiles with the warmed-up engine. Cause and effect based analysis reveals potential for using different fuels to reduce vehicle emission and deficiencies associated with particular fuels. The highest tank to wheel efficiency and the lowest CO2 emission are observed with the natural gas fuelled vehicle, that also featured the highest total hydrocarbon emissions and high NOx emissions because of fast three way catalytic converter aging due the use of the compressed natural gas. Retrofitted liquefied petroleum gas fuel supply systems feature the greatest air-fuel ratio variations that result in the lowest TtW efficiency and in the highest NOx emissions of the liquefied gas fuelled vehicle.  相似文献   

15.
While the phenomenon of excess vehicle emissions from cold-start conditions is well known, the magnitude and duration of this phenomenon is often unclear due to the complex chemical processes involved and uncertainty in the literature on this subject. This paper synthesizes key findings regarding the influence of ambient and engine temperatures on light-duty vehicle (LDV) emissions. Existing literature, as well as analytical tools like the U.S. Environmental Protection Agency’s Motor Vehicle Emission Simulator (MOVES), indicate that while total vehicle emissions have dropped significantly in recent years, those associated with cold starts can still constitute up to 80% for some pollutant species. Starting emissions are consistently found to make up a high proportion of total transportation-related methane (CH4), nitrous oxide (N2O), and volatile organic compounds (VOCs). After 3–4 min of vehicle operation, both the engine coolant and the catalytic converter have generally warmed, and emissions are significantly lower. This effect lasts roughly 45 min after the engine is shut off, though the cooling rate depends greatly on the emission species and ambient temperature. Electrically (pre-)heated catalysts, using the bigger batteries available on hybrid drivetrains and plug-in vehicles, may be the most cost-effective technology to bring down a sizable share of mobile source emissions. Trip chaining (to keep engines warm) and shifting to non-motorized modes for shorter trips, where the cold start can dominate emissions, are also valuable tactics.  相似文献   

16.
The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low-carbon alternative to today’s gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition to conventional fuels was introduced into the MIT Emissions Prediction and Policy Analysis (EPPA) model as a perfect substitute for internal combustion engine (ICE-only) vehicles in two likely early-adopting markets, the United States and Japan. We investigate the effect of relative vehicle cost and all-electric range on the timing of PHEV market entry in the presence and absence of an advanced cellulosic biofuels technology and a strong (450 ppm) economy-wide carbon constraint. Vehicle cost could be a significant barrier to PHEV entry unless fairly aggressive goals for reducing battery costs are met. If a low-cost PHEV is available we find that its adoption has the potential to reduce CO2 emissions, refined oil demand, and under a carbon policy the required CO2 price in both the United States and Japan. The emissions reduction potential of PHEV adoption depends on the carbon intensity of electric power generation. Thus, the technology is much more effective in reducing CO2 emissions if adoption occurs under an economy-wide cap and trade system that also encourages low-carbon electricity generation.  相似文献   

17.
Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.  相似文献   

18.
Electric vehicles are often said to reduce carbon dioxide (CO2) emissions. However, the results of current comparisons with conventional vehicles are not always in favor of electric vehicles. We outline that this is not only due to the different assumptions in the time of charging and the country-specific electricity generation mix, but also due to the applied assessment method. We, therefore, discuss four assessment methods (average annual electricity mix, average time-dependent electricity mix, marginal electricity mix, and balancing zero emissions) and analyze the corresponding CO2 emissions for Germany in 2030 using an optimizing energy system model (PERSEUS-NET-TS). Furthermore, we distinguish between an uncontrolled (i.e. direct) charging and an optimized controlled charging strategy. For Germany, the different assessment methods lead to substantial discrepancies in CO2 emissions for 2030 ranging from no emissions to about 0.55 kg/kWhel (110 g/km). These emissions partly exceed the emissions from internal combustion engine vehicles. Furthermore, depending on the underlying power plant portfolio and the controlling objective, controlled charging might help to reduce CO2 emissions and relieve the electricity grid. We therefore recommend to support controlled charging, to develop consistent methodologies to address key factors affecting CO2 emissions by electric vehicles, and to implement efficient policy instruments which guarantee emission free mobility with electric vehicles agreed upon by researchers and policy makers.  相似文献   

19.
A fuel levy is one of the market-based measures (MBMs) currently under consideration at the International Maritime Organization. MBMs have been proposed to improve the energy efficiency of the shipping sector and reduce its emissions. This paper analyses the economic and environmental implications of two types of levy on shipping bunker fuels by means of an analytical model built on the cobweb theorem. A unit-tax per ton of fuel and an ad-valorem tax, enforced as a percentage of fuel prices, are examined. In both cases, a speed and fuel-consumption reduction equivalent to an improvement in the energy efficiency of the sector would be expected as a result of the regulation enforcement. The speed reduction in the unit-tax case depends on fuel prices and the tax amount, whereas in the ad-valorem case it relies upon the enforced tax percentage.Both schemes lead to industry profit decline, the extent of which depend on the structure of the levy and market conditions. Since there is concern that the costs resulting from the policy will be passed from shipping companies to their customers along the supply chain, the paper dwells on how the costs arising from the enforcement of the levy will be actually allocated between ship-owners and operators, and cargo-owners. In a market characterised by high freight rates and with no or limited excess capacity, a higher percentage of the total tax amount is transferred from ship-owners to shippers. In case of a recession the opposite happens.  相似文献   

20.
Motorcycles are the third most common means of transportation in the megacity of Tehran. Hence, measurements of emission factors are essential for Tehran motorcycle fleets. In this study, 60 carburetor motorcycles of various mileages and engine displacement volumes were tested in a chassis dynamometer laboratory according to cold start Euro-3 emissions certification test procedures. For almost all of the tested samples, the average carbon monoxide (CO) emission factors were about seven times higher than the limits for Euro-3 certification. No motorcycle fell within the Euro-3 certification limit on CO emissions. 125 cc engine displacement volume motorcycles, which are dominant in Tehran, have the most total unburned hydrocarbons and CO emission rates, and they have less nitrous oxides (NOX) emission rates and fuel consumption compared to those of larger engine volume motorcycles. Calculation of fuel-based emission factors and moles of combustion products shows that about 40% of fuel consumed by 125 cc engine volume motorcycles burns to incomplete combustion products. This proportion is lower for larger engine volume motorcycles. Approximation of relative air–fuel ratio results shows very rich combustion in selected motorcycles. Using a carburetor fuel supply system, low engine compression ratio, aging, and no catalyst could be reasons for high emission rates. These reasons could possibly result in high ultrafine particles emission rates from motorcycles. Comparison of total motorcycle pollutant emissions to that of passenger cars from previous studies in Tehran shows that motorcycles contribute to pollutant much higher than their contribution to the total fleet or total travels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号