首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
介绍了一种车内环境品质正向设计方法,即在车型研发初期,根据车型定位设定整车车内空气质量性能指标,通过材料认可筛选出低VOC、低气味的材料牌号,再对认可后的材料进行零部件用材方案组合;针对用材组合方案,利用量产车型模具进行样件试制和工艺验证;最后利用整车VOC、气味模拟评价舱对整车内饰零部件的VOC和气味性能进行模拟验证,根据模拟验证结果确定整车内饰零部件最终用材及工艺方案。然后再通过过程管控对工装样件和工装样车进行实件、实车验证。  相似文献   

2.
文章首先简要的介绍了车内空气质量的管控方式以及现状,同时也通过我国国内某公司车的车内空气质量管控体系来进行相关的介绍,并且利用云处理分析具有较低VOC的材料,而且通过大数据总结了车内禁用材料清单。同时还通过与汽车零部件供应相关的VOC数据库来进行高危风险零部件的筛选。希望而已为我国汽车零部件供应商的提供一定的参考。  相似文献   

3.
本文从试验检测过程监督,产品生产、运输、存储环境背景分析,原材料报告抽检,材料拆解测试等四个方面进行溯源,总结提炼出了某新能源车地毯VOC超标溯源及管控方法。通过实际效果验证,整改后的产品VOC结果达到了目标要求。本文不仅对企业在解决产品VOC超标问题方面提供借鉴,而且对企业提高产品VOC管控意识,建立有效的管控方案也有一定的帮助。  相似文献   

4.
介绍了我国及国外发达国家对车内VOC的管控历程,分析了国内外汽车车内VOC法规的状况,并将国内外VOC相关法规和检测方法进行对比,详细介绍了整车、总成零部件和材料级别的车内VOC检测方法,通过对国外相关VOC法规及检测标准的介绍,为我国车内VOC法规及测试标准提供相关的指导性建议,为国内汽车车内空气质量的发展奠定基础。  相似文献   

5.
为研究测量不确定度对乘用车内部VOC管控限值的影响,通过建立车内VOC数学模型,分析车内VOC测量不确定度分量,计算出车内VOC测量不确定度,从而得出了基于苯、甲苯、二甲苯、乙苯、苯乙烯5种物质测量不确定度的精确管控限值。车企内部应用该VOC的精确管控限值作为VOC管控目标,可以提升整车VOC开发目标的一次性通过率,同时,对于各个国家和地区的不同法规要求,以及其他领域中验证周期较长、验证成本较高的同类别开发目标的确定,本研究方法同样有效。  相似文献   

6.
主要介绍了车内空气质量正向设计方法目标分解及控制过程要素。即对材料、零件性能参数进行分析研究,梳理研究整个开发过程,对各个环节的注意事项和关键要素进行论述。通过对材料、零部件、整车的VOC、气味性进行科学合理的正向控制,制定有效可靠的解决方案,从而可以对车内空气质量控制方案进行改进,制定科学合理的技术标准、开发流程。实现提高车内空气质量开发效率,降低开发成本、缩短开发周期。  相似文献   

7.
通过主要内饰件VOC及气味的释放推算量化整车的水平,以实现车内空气质量达标及气味品质提升的目的。采用1 m3试验舱对某车型的主要内饰件VOC以及气味进行测试,并用整车试验舱对新装配内饰件后的整车进行验证测试,以8种典型目标物定量分析以及主要气味性物质进行定性分析对比研究。结果表明,由主要的内饰件VOC的释放水平总趋势与车内空气质量高度吻合,而且主要内饰件的气味水平也与整车的气味保持一致;建立了内饰件VOC及气味对整车的空气质量贡献的数据模型,对预测并改进整车的车内空气质量水平的工作提供指导。另外结合2019年C-ECAP的评价规程对2款车的车内空气质量进行了评价计算。  相似文献   

8.
汽车悬架、动力总成安装点的动态性能对车身传递特性有着非常大的影响。针对某款乘用车在研发路试阶段主观评价发现的加速车内噪声问题进行优化,通过实车及台架试验对该问题进行分析,确认问题原因主要来自于后悬置隔振率不足,采用仿真手段优化支架结构,并对改进后方案进行实车效果验证。测试效果表明,优化后的动力总成后悬置支架使得车内噪声降低2 dB (A)。研究结论丰富了车辆悬置安装结构系统的设计方法及低灵敏度车身设计要点。  相似文献   

9.
为解决车内易挥发有机物(VOC)污染问题,以汽车顶棚总成为例,通过对其产品及原材料VOC检测、生产工艺和储存环境影响与分析,提出相应的改进措施和方法,从而开展基于材料、零部件及成形工艺的汽车顶棚总成低VOC绿色设计与开发,为主机厂和配套商提供汽车顶棚总成VOC溯源分析和低VOC材料工艺解决方案。  相似文献   

10.
由于整车VOC(挥发性有机化合物)检测方法与零部件检测方法不同,当某车型内饰零部件全部满足企标要求时,整车VOC仍然不满足国标要求,通过拆解该车型座椅总成后,经过试验后整车VOC满足要求,进而得知座椅总成是整车VOC超标的主要贡献源,最终通过对座椅总成中发泡的改善,使得整车VOC满足国标要求。  相似文献   

11.
基于国内外对车内空气质量严格的管控标准条件下,为了指导车企更有效地控制车内挥发性有机物(Volatile Organic Compounds,VOC)的含量,从汽车内饰件所用材料的角度对VOC的产生和散发机理进行分析,并结合高分子材料本身的结构与性能特点,分析车内VOC含量的影响因素及控制方法。结果表明,高温、氧化剂等因素有利于VOC的释放、湿度对VOC释放的影响情况则与有机物本身的水溶性有关。同时,进一步从原材料的选用、高分子材料的加工及工艺设计、汽车的结构设计以及消费者端等4个角度提出控制车内VOC含量的措施。  相似文献   

12.
本文阐述了汽车内饰用聚丙烯材料及制品气味及VOC的改善措施。通过试验研究和车内空气质量改善实践经验,总结了影响聚丙烯零件散发特性的因素,提出了聚丙烯材料在聚合过程中、改性过程中和注塑生产过程中减少产生挥发性物质,降低车内VOC、气味和雾度的原理和方法。通过选择环保原材料、采用环保工艺并用适当的方法进行零部件的后处理,聚丙烯零部件VOC和气味大幅下降,能够达到企业标准要求。  相似文献   

13.
文章以"汽车内饰件VOC"为主题,分析了车内VOC的产生原因以及危害,总结了国内外在汽车内饰件VOC控制方面所采取措施与现状。通过对汽车内饰件VOC的来源分析,探讨VOC控制所采取的措施的可行性,针对汽车整车企业以及零部件企业,提出了汽车内饰件VOC控制建议和方案。  相似文献   

14.
从深入了解车内污染源及相关法规,建立企业标准进行摸底检测,对零部件环保性进行优化和管控,加强材料和整车环保性验证等几个方面探讨客车内空气质量管控体系的搭建过程。  相似文献   

15.
随着国家对乘用车车内空气质量管理的要求越来越严格,具备VOC测试能力的第三方测试机构和零部件供应商逐渐增多。VOC测试受环境、人员、设备、方法的影响非常大,作为主机厂需要确认测试机构的测试方法、测试条件、测试设备、人员能力是否符合标准要求,只有按标准实施测试才能保证测试结果的准确可信。广汽本田2015年起开展了对供应商试验能力认可活动,本文结合VOC测试能力评价的经验,总结了评价方案策划、样品选取与准备、样品运输、报告回收、数据分析环节的技术要点,对VOC测试能力评价进行探讨。  相似文献   

16.
通过对前保险杠饰条与前大灯饰条间隙面差超差问题的研究,针对实车匹配状态反映的问题,对零部件质量、尺寸链校核及匹配方案进行分析和验证,找到影响匹配的主要因素;对零部件进行尺寸修正,使前保险杠饰条与前大灯饰条匹配满足DTS(Dimensional Technical Specifications)设计要求,并指出设计上的不足,以便在后续车型中规避和优化。  相似文献   

17.
根据某销售公司在2016年12月~2017年4月收到F汽车公司生产的乘用车用户反馈车内异味问题进行研究,以期找到气味物质主要来源,从而为源头控制、过程改进与末端治理相结合的车内空气质量综合管控体系的建立提供参考价值;主要方法为结合重点内饰件的主要用材和生产工艺,探究整车VOC超标原因;研究结果表明,车内乙醛超标主要是顶棚及座椅引起的,甲苯超标则是顶棚及密封条引起。对相关零部件进行管控,并对供应商提出有效的整改意见,为整车生产商提供整改依据。  相似文献   

18.
采用GC-MS与HPLC对开启车载净化器前后的车内VOC(挥发性有机化合物)含量进行检测,结果表明此车载空气净化器对车内VOC具有净化效果,且甲醛净化效果最为显著。进一步对净化效果的时效性进行验证得知,车载空气净化器第10min时净化率趋近稳定,通过此次车载净化器净化车内VOC的效果验证,为主机厂开展车载空气净化器净化效果验证提供了一个可以借鉴和参考的方法。  相似文献   

19.
乘用车座椅是车内表面积最大的零部件,是车内空气异味与VOC的主要来源之一。将改性后的活性炭加入到聚氨酯泡沫反应体系中,得到1种能持续吸收聚氨酯泡沫中残留的小分子异味物质的材料。研究了不同粒径的改性活性炭在异氰酸酯溶液中的分散性,找到了活性炭填充的最佳粒径范围。在保证聚氨酯泡沫力学强度的基础上,填充的活性炭起到良好地吸收车内异味及VOC的作用。  相似文献   

20.
建立了基于嗅阈值的车内气味溯源方法,利用该方法对某车型进行气味溯源,找到了引起车内气味的重点气味物质和气味高危零部件。结果表明,引起该车型的重点气味物质为苯并噻唑、己醛、丙醛、2,6-二叔丁基-4-甲基苯酚、壬醛、癸醛、乙酸等24种物质,气味高危零部件为顶棚、遮阳板、风道、三厢总成、车厢地板系统、门护板、前排座椅总成、方向盘等8种零部件。为主机厂进行车内气味管控提供了科学的方法,具有重要的现实意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号