首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
为了精确地模拟车辆跟驰过程,应用相关分析的方法建立一系列跟驰模型,用微积分的方法解析模型.通过变量筛选.明确了影响车辆跟驰的重要因素有速度差、间距和前车速度.通过对模型的解析.确定了模型参数的合理取值范围以确保模拟的稳定.建立的跟驰模型可以模拟不同车辆之间的跟驰行为.预测跟驰车辆的运动状态,用于智能车辆控制或者用于追尾预警.如果获得了更完备的实验数据,基于相关分析建立跟驰模型的方法可以更精确地考虑到车辆运动状况、动力性能、道路条件、驾驶特性等影响因素.  相似文献   

2.
基于支持向量机算法建立车辆跟驰模型,模拟单车道车辆跟驰行为——加速、减速、无动作;利用NGSIM数据对模型进行训练和测试,并与Gipps车辆跟驰模型的测试结果进行对比。结果表明:所建模型各项误差指标的精度均有较大提升,能够挖掘出影响跟驰行为的变量之间的潜在关系,弥补了传统车辆跟驰模型的不足。  相似文献   

3.
为客观地描述绿灯期间交叉口进口道异质疏解车流的跟驰行为,基于实测数据验证全速差模型发现,其加速度、速度、车间距的仿真结果存在较大误差. 考虑不同车型车辆性能和驾驶员驾驶行为差异,基于4 种跟驰情景,即小客车跟驰小客车(car-car),小客车跟驰公交车(car-bus),公交车跟驰小客车(bus-car),公交车跟驰公交车(bus-bus),建立考虑车流异质性的车辆跟驰模型. 结果表明,改进模型的性能提升明显,较全速差模型,速度和跟驰间距的均方根百分比误差(RMSPE)分别下降了15.29%,22.32%,更符合交叉口进口道异质疏解车流的跟驰行为.  相似文献   

4.
针对模拟弹簧车辆跟驰模型进行深入研究,根据实地的交通调查数据,利用回归分析方法和拟牛顿法对模拟弹簧车辆停车和起动跟驰模型参数进行了标定,得出几种一般状态的模拟弹簧车辆停车和起动跟驰模型,最后得出结论:起动过程车辆初速度主要分布在2~6.5 m/s之间,并选取速度中间值得出起动过程模型;停车过程车辆初速度主要分布呈现三个区间,就每个区间选取其中间值得出了模拟弹簧车辆跟驰模型停车过程的方程.  相似文献   

5.
基于最小二乘支持向量机(Least squares support vector machine,LS-SVM)算法建立符合我国道路交通流特征的车辆跟驰模型,并用该模型模拟单车道道路上车辆的跟驰行为。采用NGSIM提供的数据对LS-SVM模型进行仿真验证,将测试结果与传统的Gipps模型进行对比。结果表明:与Gipps模型相比,LS-SVM模型对应的各项误差指标精度均有明显改善,能够挖掘变量之间的潜在关系,弥补传统车辆跟驰模型的不足。  相似文献   

6.
模拟弹簧车辆跟驰模型参数的标定   总被引:1,自引:1,他引:0  
针对模拟弹簧车辆跟驰模型进行深入研究,根据实地的交通调查数据,利用回归分析方法和拟牛顿法对模拟弹簧车辆停车和起动跟驰模型参数进行了标定,得出几种一般状态的模拟弹簧车辆停车和起动跟驰模型,最后得出结论:起动过程车辆初速度主要分布在2~6.5 m/s之间,并选取速度中间值得出起动过程模型;停车过程车辆初速度主要分布呈现三个...  相似文献   

7.
为了研究环形交叉口入口道车辆跟驰行为,依据实地交通调查的数据,利用线性跟驰模型和回归分析方法对环形交叉口入口道跟驰车辆进行分析,分析结果表明:环形交叉口入口道的车辆跟驰行为是符合线性跟驰模型的,但是有别于普通道路上的车辆跟驰行为,其反应强度系数λ的值在0.2 ~1.0之间,λ值为0.38出现的概率比较大,占40%,进行稳定性分析可知车间距的摆动处于基本稳定和衰减摆动两种状态,是符合局部稳定性的.  相似文献   

8.
基于自动驾驶车辆(AV)和常规人驾车辆(RV)混合行驶的情况,在全速度差(FVD)模型的基础上考虑了多前车和一辆后车的车头间距、速度、速度差、加速度差等因素,建立了适用于AV和RV 2种车辆的混行车辆跟驰模型;引入分子动力学理论定量化表达了周围车辆对主体车辆的影响程度;利用RV和AV混行场景跟车数据,以模型拟合精度最高为目标,对所有参数遍历寻优,进行标定;对比分析了混行车辆跟驰模型和FVD模型控制下交通流的稳定性,解析了车速对交通流稳定性的影响;设计了数值仿真试验,模拟了城市道路和高速公路2种常见场景,分析了混行车辆跟驰模型的拟合精度。研究结果表明:考虑周围多车信息有利于提高交通流的稳定性;车辆速度越低交通流稳定性越差;考虑多车信息的分子动力学混行车辆跟驰模型可以提前获得整个车队的运行趋势,更好地模拟AV的动力学特征;与FVD模型相比,在城市道路条件下混行车辆跟驰模型中的RV平均最大误差与平均误差分别减小了0.18 m·s-1和13.12%,拟合精度提高了4.47%;与PATH实验室的ACC模型相比,在高速公路条件下混行车辆跟驰模型中的AV平均最大误差和平均误差分别减小了7.78%和26.79%,拟合精度提高了1.21%。可见,该模型可用于混行环境下AV的跟驰控制与队列控制,以及AV和RV的跟驰仿真。   相似文献   

9.
为了研究环形交叉口入口道车辆跟驰行为,依据实地交通调查的数据,利用线性跟驰模型和回归分析方法对环形交叉口入口道跟驰车辆进行分析,分析结果表明:环形交叉口入口道的车辆跟驰行为是符合线性跟驰模型的,但是有别于普通道路上的车辆跟驰行为,其反应强度系数A的值在0.2—1.0之间,A值为0.38出现的概率比较大,占40%,进行稳定性分析可知车间距的摆动处于基本稳定和衰减摆动两种状态,是符合局部稳定性的.  相似文献   

10.
为克服传统车辆跟驰模型不易获得驾驶员在决策过程中潜在的决策模式和各影响因素间的潜在关系的不足,采用随机森林(random forest,RF)算法建立车辆跟驰模型。模拟单车道车辆跟驰行为,利用NGSIM(next generation simulation)车辆轨迹实测数据对所建模型进行训练和测试,并与Gipps跟驰模型的测试结果进行对比。结果表明:与Gipps模型相比,RF模型的各项误差指标的精度均得到较大提升。  相似文献   

11.
为了更好地模拟智能网联车辆(CAV)的跟驰特性, 在纵向控制模型(LCM)的基础上考虑V2V环境下多辆前车速度和加速度的影响, 构建了智能网联环境下的纵向控制模型(C-LCM); 对LCM和C-LCM进行稳定性分析, 比较了2个模型的交通流稳定域, 确定了不同通信距离时C-LCM对交通流稳定域的影响; 设计数值仿真试验对加速和减速的常见交通场景进行模拟, 分析了在V2V通信条件下CAV的跟驰行为特征; 仿真分析了CAV不同通信距离以及不同渗透率影响下的交通流安全水平; 构建了包含不同CAV渗透率的混合交通流基本图模型。研究结果表明: 交通流稳定域随着考虑前车数量的增多而增大, 当只考虑1辆前车时, 前车与本车的间隔越远, 车辆速度系数对C-LCM稳定域的影响越大; C-LCM可以提前对多前车的行为做出反应, 更好地模拟CAV的动力学特征, 在减速情景中速度超调量从0.15减少为0.08, 最大速度延迟时间由7.5 s缩短为4.9 s, 在加速情景中速度超调量从0.07减少为0.04, 最小速度延迟时间由3.5 s缩短为2.6 s; 随着CAV渗透率的提升, 交通流的安全水平不断提升, 当通信范围内有4辆CAV时, 交通流的安全性能达到最高, 其TIT和TET指标的最大减少量分别为57.22%和59.08%;随着CAV渗透率的提升, 道路通行能力从1 281 veh·h-1提升为3 204 veh·h-1。可见, 提出的C-LCM可以刻画不同车辆的跟驰特点, 实现混合交通流建模, 并降低混合交通流的复杂性, 为智能网联车辆对交通流的影响分析提供参考。   相似文献   

12.
为了分析自动驾驶车辆对交通流宏观特性的影响, 以手动驾驶车辆与自动驾驶车辆构成的混合交通流为研究对象, 提出了不同自动驾驶车辆比例下的混合交通流元胞传输模型(CTM); 应用Newell跟驰模型作为手动驾驶车辆跟驰模型, 应用PATH实验室真车测试标定的模型作为自动驾驶车辆跟驰模型; 计算了手动驾驶与自动驾驶车辆跟驰模型在均衡态的车头间距-速度函数关系式, 推导了不同自动驾驶车辆比例下的混合交通流基本图模型, 计算了混合交通流在不同自动驾驶车辆比例下的最大通行能力、最大拥挤密度以及反向波速等特征量, 依据同质交通流CTM理论建立了不同自动驾驶车辆比例下的混合交通流CTM; 选取移动瓶颈问题进行算例分析, 应用混合交通流CTM计算了不同自动驾驶车辆比例下的移动瓶颈影响时间, 应用跟驰模型对移动瓶颈问题进行微观数值仿真, 分析了混合交通流CTM计算结果与跟驰模型微观仿真结果之间的误差, 验证了混合交通流CTM的准确性。研究结果表明: 混合交通流CTM能够有效计算移动瓶颈的影响时间, 在不同自动驾驶车辆比例下, 混合交通流CTM计算结果与跟驰模型微观仿真结果的误差均在52 s以下, 相对误差均小于10%, 表明了混合交通流CTM在实际应用中的准确性; 混合交通流CTM体现了从微观到宏观的研究思路, 基于微观跟驰模型与目前逐步开展的小规模自动驾驶真车试验之间的关联性, 混合交通流CTM能够较真实地反映未来不同自动驾驶车辆比例下单车道混合交通流演化过程, 增加了模型研究的应用价值。   相似文献   

13.
为真实地反应车辆跟驰机理,假设在跟驰状态下,驾驶员倾向于保持最优跟驰间距,在分析最优间距函数的基础上,建立了车辆跟驰模型(optimal distance model, ODM).利用NGSIM数据,对ODM模型和经典Gipps车辆跟驰模型进行参数标定和评价.用仿真方法分析了ODM模型再现宏观交通流现象的能力和加速度特性.研究结果表明:与Gipps模型相比, ODM模型的加速度、速度和距离的仿真精度分别提高了0.36 m/s2、0.99 m/s和0.73 m,并能够再现实际交通流中稳定车流和冲击波等交通现象;在稳定交通流中, ODM模型总是趋向于使车辆间距等于最优跟驰间距,或在其附近小幅度波动.   相似文献   

14.
车辆跟驰行为受前导车和道路环境等的影响,将车辆抽象成相互作用的分子,基于分子动力学构建相互作用势函数,建立基于相互作用势函数的分子跟驰模型.采集试验路段不同点位的交通流样本,从视频中获得所需数据,并对加速度波动特性进行分析.将车辆运行状态分为常态行驶,起动加速和减速停车3种,根据实测交通数据对3种车辆运行状态进行模型参数标定,同时对分子跟驰模型进行稳定性分析验证,结果表明,相对于经典GM模型,分子跟驰模型稳定性更好,对实际交通状态拟合程度更高.  相似文献   

15.
为了探究车辆跟驰中车头间距与速度的关系函数,采用高精度车载GPS设备获取了大量基于时间序列的车辆跟驰数据,根据实测车头间距—平均速度关系构建了改进的优化速度函数.对原优化速度函数和改进的优化速度函数进行了参数标定,并对两个函数进行了微观向宏观交通参数的推导,结果表明,改进的优化速度函数能更好地描述车辆跟驰中微观和宏观交通参数之间的关系.最后对基于两种函数的全速度差跟驰模型进行了数值模拟,结果表明,基于改进的优化速度函数的跟驰模型具有更好的稳定性.  相似文献   

16.
基于Fluent软件的雨天潮湿路面滑水现象研究   总被引:1,自引:0,他引:1  
通过建立纵横向花纹轮胎有限元模型,利用Fluent软件模拟得到不同行驶条件下车轮所受到动水压强大小以及轮胎不同部位水流速度的分布规律.结果表明动水压强产生的高压区域在轮胎的前端,而且当轮胎发生完全滑水时花纹起不到原有排水效果.根据实验结果提出雨天行驶条件下临界滑水车速以及车辆安全行驶的建议.  相似文献   

17.
基于离散选择理论,提出了车辆跟驰模型.考虑七个选择肢中的加减速度,采用选择肢特定参数反映出不同选择肢的吸引程度.为了避免换道行为的干扰,利用HOV车道的车辆数据对模型进行标定和验证.结果显示,大多数的标定参数在95%的置信水平下都是较为显著的.此外,模型反映出的不同的车头间距及速度下的驾驶员对不同加减速度的选择趋势与日常驾驶行为完全吻合.验证结果表明,对于实际状况下被选择的选择肢,大于1/7 (每个选择肢的平均预测概率) 的预测概率的比例大于87%.从观测比例的角度看,实际观测值与模型的预测值之间差异并不显著.最后应用模型模拟30分钟的单车道交通状况.  相似文献   

18.
高速公路意外事件影响下的车辆跟驰模型   总被引:7,自引:3,他引:7  
应用智能主体技术,针对双向四车道高速公路意外事件影响下的车辆跟驰行为,建立了基于智能主体的车辆跟驰模型,利用西部高速公路交通调查统计的数据,对车辆主体的间距愿望进行了定量分析,利用比例微分控制确定车辆主体的加速度响应,建立了不同加速度队列的逻辑意图,使模型的加速度响应符合车辆的动力特性。利用开发的EAD-Simulation系统,在特定和随机两种不同过程下对模型进行的测试表明:利用智能主体技术描述高速公路意外事件影响下的跟驰行为,可充分发挥其个性、自治性和自适应性的特点,在主体的属性描述中利用比例微分控制“类阻尼”的特性,可有效地对车辆主体的稳定性进行控制。  相似文献   

19.
基于分层COX 模型的跟驰反应延迟时间生存分析   总被引:1,自引:0,他引:1  
驾驶员的反应延迟时间是驾驶员跟驰行为的重要指标之一,也是跟驰模型中的重要参数之一. 为分析延迟时间与车辆运动状态、光照条件影响因素之间的关系及延迟时间的概率分布,通过实车实验得到跟驰行为延迟时间自然驾驶数据,采用Kaplan-Meier 方法进行延迟时间单因素分析并构建延迟时间分层COX模型. 结果表明:驾驶员跟驰反应延迟时间生存函数受前车加速度,前车加速度变化状态影响显著;前车加速度与延迟时间风险函数之间的关系随时间变化,需采用分层COX模型建模;前后车相对距离每增大10 m,延迟时间风险函数取值减小6.03%;前车由变速运动变为匀速运动时,延迟时间风险函数取值减小35.39%. 研究给出延迟时间风险函数与影响因素之间的定量关系,结果可应用于跟驰模型参数优化与微观驾驶行为仿真模型.  相似文献   

20.
为满足智能车辆的个性化需求,提高智能车辆人-机交互协同的满意度和接受度,构筑双层驾驶人跟驰模型框架,提出自适应驾驶人期望跟车间距和行为习惯的个性化驾驶人跟驰模型。首先,提取个体驾驶人跟驰均衡状态的数据,采用高斯混合和概率密度函数(Gaussian Mixture Model and Probability Density Function, GMM-PDF)建立第 1 层模型,即驾驶人期望跟车距离模型。然后,将期望跟车距离参数引入模型,基于高斯混合-隐马尔可夫方法(Gaussian Mixture Model and Hidden Markov Model, GMM-HMM)学习驾驶习性,建立第2层模型预测加速度,即个性化驾驶人跟驰模型。其次,研究不同高斯分量个数对模型效果的影响,对比双层模型与 Gipps 模型、最优间距模型(Optimal Distance Model, ODM)、单层模型及通用模型的性能。最后,8位被试驾驶人的自然驾驶行为数据验证结果表明:高斯分量数量与模型性能存在一定的正相关性;在最优高斯分量数量下,8位被试驾驶人在训练集上预测误差均值为0.101 m·s-2,在测试 集上为0.123 m·s-2;随机选取其中1位驾驶人的2个跟车片段数据进行模型计算,结果显示,加速度的平均误差绝对值分别为0.087 m·s-2和0.096 m·s-2,预测效果优于Gipps模型、ODM模型、单层 模型及通用模型30%以上,与驾驶人实际跟驰行为的吻合度更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号