首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
针对超高速磁浮车-轨道梁竖向耦合振动的问题,提出一种基于轨道梁有限单元模型和磁浮力比例-积分-微分(PID)控制器模型的分析方法。为提高计算效率,整体耦合系统以磁浮力为界,分为车辆和轨道梁2个子系统,车-梁之间的振动耦合则通过PID控制器计算的磁浮力来完成。组成耦合系统的子系统分别采用振型分解法和四阶龙格库塔法计算其振动响应。为验证方法的有效性以及了解超高速磁浮车桥耦合振动特性,使用Mathematica编程进行超高速磁悬浮车-轨道梁的耦合振动分析,得到运行速度为600km/h的车辆和轨道梁的动力响应。研究成果可为超高速磁浮轨道结构设计和关键技术研究提供参考。  相似文献   

2.
研究目的:对于如长沙磁浮工程已经通车的道岔,道岔结构竖向振动加速度达2. 37g以上,均远超过规范规定的无砟轨道地段不应大于0. 5g,影响道岔使用寿命、车辆寿命及旅客舒适度,需要测试分析振动超标产生原因,寻求减振方案,既要使振动满足不大于0. 5g要求,又要尽可能少增加道岔梁质量影响道岔梁转动速度。研究结论:(1)经测试分析,长沙磁浮工程道岔梁振动为车轨共振,可采用减振器消能减振;(2)磁浮列车不同于轮轨列车,受电磁悬浮控制系统影响,列车自振频率存在一定波动,采用多重调谐质量调谐阻尼器(TMD)的方式控制一定激振频率带的振动,达到控制频率能全覆盖;(3)采用模糊控制理论的多重调谐质量调谐阻尼器(TMD)适用于处理所有因共振引起的结构振动超标。  相似文献   

3.
轨道振动俘能技术是回收利用列车通过时轨道振动产生的能量,为铁路监测设备提供电力供给。现有轨道振动俘能方式对轨道振动参量的要求与轨道运行实际工作状态不符,是制约其进入实用化阶段的瓶颈。本文介绍磁浮式非线性轨道振动换能器的设计、建模和试验验证,提出轨道振动-电磁耦合动力学模型,分析磁浮式非线性轨道振动换能系统的响应特性。研究结果表明:利用磁悬浮的非线性刚度特性可以实现宽频带能量收集;可以通过调节器件参数(线圈匝数、线圈几何形状及表面磁通密度等)来适应轨道小位移的振幅要求;轨道振动-电磁耦合动力学模型可计算车辆行经时轨道结构的发电能力,为电磁式轨道振动俘能装置的设计提供理论依据。  相似文献   

4.
研究目的:在我国新建中低速磁浮运营线的背景下,因中低速磁浮轨道梁较为轻巧,为保证磁浮列车行车安全及舒适性,需对其进行磁浮列车-轨道梁耦合振动分析验证。本文以株洲某厂磁浮试验线20 m简支梁为工程背景,建立车辆为12个自由度的二系悬挂质量-弹簧-阻尼模型,并考虑轨道不平顺对车桥振动的影响,建立磁浮列车-轨道梁竖向耦合振动分析模型,且编制仿真分析软件VTBIM,通过仿真值与现场试验实测值的对比,验证所建模型的合理性。研究结论:(1)现场试验测试轨道梁基频、振型及轨道梁跨中动挠度/加速度,轨道梁基频及振型测试结果比仿真值略小;(2)磁浮车辆通过简支梁时,梁跨中竖向挠度/加速度的实测值均略小于仿真值,仿真值随车速的变化规律与实测值规律一致,挠度时程曲线仿真值与实测波形基本一致;(3)研究结果表明本文所建立的中低速磁浮列车-轨道梁竖向耦合振动模型合理,编制的仿真分析软件的计算结果可信;(4)该研究结果可用于中低速磁浮轨道梁设计参考。  相似文献   

5.
为研究磁浮车辆悬浮控制器的状态观测器参数对悬浮稳定性的影响,解决磁浮车辆悬浮不稳的问题,建立单电磁铁与柔性轨道梁的耦合模型。通过对悬浮系统传递函数的研究,得到速度激励信号频率与悬浮系统对轨道梁的功率输出的关系曲线,并得到状态观测器参数对系统性能的影响规律。由此得出结论,通过绘制"悬浮系统对轨道梁的振动能量输出功率"与"轨道梁主频率"间的关系曲线,即可得到不考虑轨道梁阻尼时,悬浮系统可适应轨道的临界参数。  相似文献   

6.
道岔系统是实现中低速磁浮列车换线的关键设备。道岔状态的好坏直接影响列车的运行安全性和旅客乘坐的舒适性。中低速磁浮采用的是主动悬浮控制技术,车辆、道岔和控制系统共同组成了一个自激振动系统,采用多重质量液体双调谐阻尼技术,可有效地抑制共振频率,但其减振作用对频率比较敏感。因此,在动载试验过程中,采用加速度传感器对车辆、道岔的共振信号进行采集以及频谱分析,并对道岔进行调整,确保共振频率和加速度达到设计标准。  相似文献   

7.
伍曾  刘学毅  王平 《铁道学报》2011,33(8):88-92
为确定道岔、桥梁的合理相对位置,深入研究快速及高速行车条件下车辆-道岔-桥梁的动态相互作用,将车辆、道岔区轨道和桥梁作为一个整体,建立车辆-道岔-桥梁耦合系统动力分析模型,用数值模拟的方法计算分析高速行车条件下道岔区轨道、车辆与连续桥梁结构的动力特性及行车安全性和舒适性。以车速350 km/h通过18号国产道岔,岔桥相对位置为尖轨尖端分别位于桥跨1/4、跨中、3/4跨及墩上,通过计算出的尖轨和心轨开口量、尖轨和心轨动应力、车体振动加速度、减载率、脱轨系数、舒适性、桥梁振幅、振动加速度和梁端转角等动力响应,确定在车辆-道岔-桥梁耦合动力条件下4×32 m连续梁桥的合理岔桥相对位置。计算结果表明,18号国产道岔铺设于4×32 m连续梁桥上时,道岔尖轨尖端位于1/4跨时综合动力效果较佳。  相似文献   

8.
建立了长定子中低速磁浮列车轨道刚柔耦合垂向动力学模型,并采用 Bernoulli—Euler 方法建立磁浮轨道动力学方程,对刚柔耦合振动进行了仿真研究,并对磁浮轨道的基本参数变化时的响应特征进行了分析比较.研究结果表明:磁浮列车轨下弹性体参数模型的选取对磁浮轨道的动态特性具有很大影响,随轨下弹性体刚度的增加,钢轨的最大位移减小,所受的力增加;磁浮列车轨下弹性体的阻尼使波动周期变大,波动频率减小,有效地发挥了减小振动、避免共振、调整高度的作用.  相似文献   

9.
中低速磁浮交通提速是目前研究趋势,但速度的提升会影响车辆运行稳定性。为探究提速后轨道的动力响应及其适应性,通过建立中低速磁浮车-轨-桥耦合动力学模型,对更高速度下轨道的振动响应进行仿真分析,并以长沙磁浮快线为对象,测试100~140 km/h速度区间内轨道的振动加速度及振动位移。研究结果表明:轨道各结构的振动响应存在差别,沿着F轨-轨枕-轨道梁逐渐减弱,车辆对轨道的垂向冲击大多被F轨的振动及弹性变形吸收,而横向冲击则更多地传递至下方的轨枕和轨道梁;随着车辆运行速度的提高,轨道的振动加速度响应逐渐加剧,轨道梁横向振动加速度较之垂向振动加速度增加更为明显,而轨道的振动位移响应则基本未表现出与速度的相关性;当车辆的运行速度提升至140 km/h后,轨道梁的垂、横向最大振动加速度分别为2.37 m/s2和0.96 m/s2,速度提升至160 km/h时,轨道梁的垂向最大振动位移为3.55 mm, F轨内外磁极面最大高度差为0.44 mm,均在规定的限值范围内,轨道的振动响应满足要求。  相似文献   

10.
磁浮车不能稳定悬停在钢轨道框架上的原因分析   总被引:1,自引:0,他引:1  
磁浮车辆不能稳定悬停在钢轨道框架上的原因,是由于钢轨道框架的自振频率与磁浮车的振动频率相近而引起的。用ANSYS软件分析了两种不同钢轨道框架的自振频率及模态。通过改变钢轨道框架立柱的侧向刚度,可以使结构的固有频率避开磁浮车的失稳频率敏感区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号