首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
建立了双级电磁悬浮控制器模型,轨道梁采用Euler-Bernoulli模型,基于单点悬浮控制系统建立"车辆-控制器-弹性梁"耦合动力学数值模型。对控制参数引起的车轨耦合失稳振动的特性进行分析,仿真计算不同轨道梁结构参数下,对中低速磁浮车轨耦合振动影响进行研究。结果表明:发生频率较低的车轨耦合振动时,轨道梁结构参数的改变对车轨耦合振动无明显影响;发生频率较高的车轨耦合振动,轨道梁固有频率随轨道梁结构而改变时,对车轨耦合振动影响明显;轨道梁固有频率不随轨道梁结构参数改变时,对车轨耦合振动无明显影响;轨道梁结构阻尼可以有效抑制车轨耦合振动响应。低频车轨耦合振动,轨道梁结构改变无法控制车轨耦合振动,车轨发生高频耦合振动时,增大轨道梁结构阻尼比及改变轨道梁固有频率均能有效控制车轨耦合振动,因此实际工程中可以考虑轨道梁下安装阻尼器和吸振器来改变轨道梁结构参数和结构阻尼来抑制振动。  相似文献   

2.
针对超高速磁浮车-轨道梁竖向耦合振动的问题,提出一种基于轨道梁有限单元模型和磁浮力比例-积分-微分(PID)控制器模型的分析方法。为提高计算效率,整体耦合系统以磁浮力为界,分为车辆和轨道梁2个子系统,车-梁之间的振动耦合则通过PID控制器计算的磁浮力来完成。组成耦合系统的子系统分别采用振型分解法和四阶龙格库塔法计算其振动响应。为验证方法的有效性以及了解超高速磁浮车桥耦合振动特性,使用Mathematica编程进行超高速磁悬浮车-轨道梁的耦合振动分析,得到运行速度为600km/h的车辆和轨道梁的动力响应。研究成果可为超高速磁浮轨道结构设计和关键技术研究提供参考。  相似文献   

3.
针对主动控制的磁悬浮车辆轨道耦合系统,从非线性特性角度出发,研究静止悬浮条件下控制参数、轨道参数与磁悬浮车轨耦合系统振动特性的相互关系.首先建立弹性轨道和刚性悬浮电磁铁运动学模型,采用串级控制算法建立悬浮控制系统模型,从而得到磁悬浮车轨耦合非线性模型;然后利用谐波平衡法,分析车辆-轨道1:1共振特性,计算得到-阶振动的幅频特性方程;由于幅频特性方程阶数较高,利用数值计算方法得到3组控制参数,分别给出其仿真结果,说明轨道和控制参数对系统振动的关键影响.结论可供轨道加工和悬浮控制系统设计时参考.  相似文献   

4.
建立了长定子中低速磁浮列车轨道刚柔耦合垂向动力学模型,并采用 Bernoulli—Euler 方法建立磁浮轨道动力学方程,对刚柔耦合振动进行了仿真研究,并对磁浮轨道的基本参数变化时的响应特征进行了分析比较.研究结果表明:磁浮列车轨下弹性体参数模型的选取对磁浮轨道的动态特性具有很大影响,随轨下弹性体刚度的增加,钢轨的最大位移减小,所受的力增加;磁浮列车轨下弹性体的阻尼使波动周期变大,波动频率减小,有效地发挥了减小振动、避免共振、调整高度的作用.  相似文献   

5.
基于列车—轨道耦合动力学理论,建立能够考虑无砟轨道-路基系统各部件间接触状态非线性的列车-路基上板式无砟轨道三维有限元耦合动力学模型,并对建立的三维非线性有限元耦合动力学模型进行相应的程序验证。运用建立的耦合动力学模型,对列车在路基上无砟轨道线路上高速行驶时,在路基不均匀沉降作用下,列车-路基上无砟轨道耦合系统动力特性进行研究。研究结果表明:(1)路基不均匀沉降对车体振动加速度影响极大,路基不均匀沉降对车体振动加速度的影响与无砟轨道类型关系不大;(2)路基不均匀沉降对无砟轨道各部件动力特性有一定的影响,影响小于对车体振动加速度的影响,路基不均匀沉降对无砟轨道各部件动力特性的影响与无砟轨道类型有一定的关系,总体来讲,路基不均匀沉降对I型板式无砟轨道动力特性的影响要大于对双块式及Ⅱ型板式无砟轨道的影响。  相似文献   

6.
基于磁浮列车车辆—轨道—桥梁耦合动力学、电磁学、控制学和现代信号分析理论,采用数学建模与数值计算方法研究磁浮控制系统不同参数状态下车辆振动响应的非线性特征(非线性度).首先建立中低速磁浮列车—轨道—桥梁的耦合动力学模型和PID悬浮控制模型;然后编制数值计算程序,计算车辆系统在不同控制参数下的动力学响应及其非线性度指标;...  相似文献   

7.
根据悬浮电磁铁产生的悬浮力为分布力这一特性,建立了多力元模拟单悬浮电磁铁线圈悬浮力的磁浮车辆垂向动力学模型,利用SIMPACK多体动力学软件建立了单力元、三力元、五力元模拟单悬浮电磁铁线圈悬浮力的磁浮车辆动力学模型,分析比较了多力元模拟悬浮电磁铁线圈悬浮力和实际悬浮力之间的差异,并且在不同波长轨道高低不平顺激励下进行了仿真计算,利用计算结果分析了不同波长的轨道垂向激励对磁浮车辆系统动力学指标的影响规律,得到了磁浮车辆对不同波长的轨道垂向激励动力响应的基本规律,证明了单力元模拟悬浮电磁铁线圈悬浮力的磁浮车辆动力学模型在轨道短波激励仿真计算中的局限性。  相似文献   

8.
应用系统工程的方法,将座椅系统与传统轨道客车系统作为一个整体大系统加以考察,建立轨道客车转向架-车体-座椅耦合系统垂向动力学模型,并推导模型的振动微分方程;根据转向架-车体-座椅耦合系统垂向振动微分方程组,通过变量变换,给出轨道客车转向架-车体-座椅系统垂向动力学模型的数值分析方法。通过与传统轨道客车垂向动力学模型得到的垂向随机响应进行对比,验证轨道客车转向架-车体-座椅耦合系统垂向动力学模型的正确性,该研究为轨道客车的振动特性分析及车辆悬挂系统参数和座椅悬置系统参数的优化设计提供了模型参考。  相似文献   

9.
针对双块式无砟轨道和路基的结构特点,建立车辆-轨道-路基垂向耦合动力学频域分析模型,模型充分考虑机车车辆、双块式无砟轨道和路基的相互耦合作用。车体、转向架和轮对被视为多刚体系统,一系和二系悬挂用弹簧阻尼元件模拟;双块式无砟轨道和路基系统视为多层叠合梁模型,彼此用弹簧阻尼元件联结。推导双块式无砟轨道和路基系统振动响应的解析表达式,计算得出轨道和路基耦合系统的动柔度特性,结合虚拟激励法提出该模型在轨道随机不平顺激励时动力学响应的求解方法,分析高速列车荷载作用下双块式无砟轨道和路基的随机振动响应及其振动传递特性。研究结果表明:在10~5 000Hz频率范围内,钢轨的动柔度幅值远大于道床与路基的动柔度幅值,而道床动柔度幅值在30Hz以上频段大于路基的动柔度幅值;钢轨振动的能量分布频段较道床和路基要宽,道床和路基振动主要集中于163.9Hz左右频段;对于无砟轨道和路基耦合系统的振动功率,钢轨最大,道床次之,路基最小;道床和路基振动功率在100Hz以上中高频段,衰减比较快,而在100Hz以下低频段,其衰减不明显;在300Hz以上高频段,钢轨-路基间振动衰减较大,其主要原因是受钢轨-道床间振动衰减波动的影响。  相似文献   

10.
研究目的:为探讨25 m跨长沙既有磁浮简支梁桥与梁上承轨简支梁桥两种轨道梁结构的中速适应性,基于有限元原理建立两种磁浮轨道梁的有限元动力分析模型,对其自振特性进行分析;基于多体动力学理论,建立了具有120个自由度的中低速磁浮车辆动力学模型;考虑PID悬浮主动控制下的悬浮控制力,建立了完善的磁浮列车-轨道梁-控制器耦合模型。依据该耦合模型进一步开展了车辆提速后两种不同轨道梁形式下的车桥耦合振动响应研究。研究结论:(1)梁上承轨简支梁桥相对于长沙既有磁浮简支梁桥具有更优的动力学性能;(2) F轨垂向位移、桥梁跨中垂向位移及加速度值相对减小幅度分别约为57. 25%、61. 26%及70. 59%;(3)车体垂向加速度与电磁悬浮力减小幅度最高分别可达25. 53%及10. 93%;(4)本研究结果可供中速磁浮桥梁结构设计参考。  相似文献   

11.
为研究轨道交通车辆经过高架桥时的动态特性,以弹性支承块式无砟轨道为例,基于车辆-轨道耦合动力学理论,建立了车辆-轨道-桥梁耦合系统的竖向振动矩阵方程,利用MATLAB软件编写了计算程序。数值算例验证了计算程序的可靠性。通过改变系统参数,探索了轨道不平顺、车辆速度和轨道结构竖向刚度对系统竖向振动响应的影响。结果表明:轨道振动频率分布在0~500 Hz范围内,以20 Hz以内的低频振动为主;桥梁振动频率分布在0~200Hz范围内,以一阶竖向弯曲振动为主;轨道不平顺所产生的轮轨高频冲击力可达轴重的3倍,是车辆-轨道-桥梁耦合系统重要激励源之一;轮轨力和轨道加速度响应对车速的变化敏感,车辆-轨道-桥梁耦合系统位移响应对车速的变化不敏感;扣件和支承块胶垫竖向刚度应根据设计要求在40~80 k N/mm之间进行合理匹配取值。  相似文献   

12.
研究目的:在我国新建中低速磁浮运营线的背景下,因中低速磁浮轨道梁较为轻巧,为保证磁浮列车行车安全及舒适性,需对其进行磁浮列车-轨道梁耦合振动分析验证。本文以株洲某厂磁浮试验线20 m简支梁为工程背景,建立车辆为12个自由度的二系悬挂质量-弹簧-阻尼模型,并考虑轨道不平顺对车桥振动的影响,建立磁浮列车-轨道梁竖向耦合振动分析模型,且编制仿真分析软件VTBIM,通过仿真值与现场试验实测值的对比,验证所建模型的合理性。研究结论:(1)现场试验测试轨道梁基频、振型及轨道梁跨中动挠度/加速度,轨道梁基频及振型测试结果比仿真值略小;(2)磁浮车辆通过简支梁时,梁跨中竖向挠度/加速度的实测值均略小于仿真值,仿真值随车速的变化规律与实测值规律一致,挠度时程曲线仿真值与实测波形基本一致;(3)研究结果表明本文所建立的中低速磁浮列车-轨道梁竖向耦合振动模型合理,编制的仿真分析软件的计算结果可信;(4)该研究结果可用于中低速磁浮轨道梁设计参考。  相似文献   

13.
为了研究在高架轨道梁上的磁浮动力作用,利用磁浮车动力学与控制的模块化组装模型技术,分析了道梁挠度对磁浮关系稳定性的影响,并对车桥耦合机制问题进行了预研究。磁浮关系是电磁悬浮力与悬浮气隙及其一次、二次导数问的约束关系。如果悬浮系统具有低频高回路增益,道梁挠度摄动不会影响磁浮关系的稳定性。否则,若低频回路增益并不足够大,气隙波动对悬浮系统形成明显的非线性影响,其固有频率也有明显的摄动。由于悬浮模块与悬浮框架的搭接结构,悬浮框架具有产生高频自振的力学条件。在磁浮车辆的3级悬挂中,即电磁悬挂、一系悬挂(橡胶悬挂)和二系悬挂(摇枕空簧),前两者固有频率接近时,悬浮框架产生高频自振,并以机械一电磁能量转换形式,使磁浮动力作用产生高频扰动,进而引起轨道共振。  相似文献   

14.
以鸭池河桥为工程背景,建立车-桥系统耦合振动分析的数值仿真模型。利用大型通用有限元软件ANSYS建立桥梁的动力分析模型,并计算其空自振特性。通过多体动力学软件SIMPACK对于CRH3动车组模型进行高精度仿真,结合SIMPACK软件和ANSYS软件,建立车桥耦合振动仿真系统,输入轨道不平顺和轮轨关系进行车桥耦合振动计算。车桥耦合振动分析结果表明:桥梁具有足够的刚度,振动状态良好;车辆运行安全性可以得到保障,舒适性指标为"优良"。该桥的车桥耦合振动计算结果为今后类似桥梁设计提供了借鉴,同时也验证了联合仿真的可行性和便利性。  相似文献   

15.
为发展城市跨坐式轨道交通,提高旅客乘坐舒适度,有必要分析轨道梁支座对跨坐式车辆运行平稳性的影响。通过动力学仿真软件建立车桥耦合动力学模型,对轨道梁和支座的车辆动力响应进行仿真计算。利用有限元软件对轨道梁支座耦合振动进行谐响应分析,通过支座刚度和支座跨度与最大车体振动加速度的关系来探究改变支座参数对跨坐式轨道交通耦合振动的影响。研究得出支座参数对跨坐式车辆平稳性的关系曲线,可为指导设计新型轨道梁支座、选择合适的轨道梁支座刚度和支座跨度作参考。  相似文献   

16.
高速铁路无砟轨道中使用橡胶减振垫能有效减小环境振动,但会增强无砟轨道结构自身振动。本文建立车辆-轨道-桥梁耦合动力模型,采用功率流方法研究减振型双块式无砟轨道振动能量特性,探讨减振型轨道振动能量重分布问题,提出相应的功率流评价指标,对轨道结构振动进行评价。研究结果表明:设置减振垫将引起轨道结构振动能量重分布,使道床板的振动能量明显增加,造成振动能量在道床板上积聚,对道床板的正常使用性能不利。因此,对铁路轨道结构采取减振措施时,不仅需要以减小环境振动为目标,还应考虑轨道结构振动能量增加的不利影响。综合考虑减振垫刚度对桥梁振动和道床板振动能量的影响,建议减振垫刚度取值为40 MPa/m。  相似文献   

17.
重载铁路桥上无砟轨道动力学选型研究   总被引:1,自引:1,他引:0  
为给孟加拉帕德玛大桥铁路连接线桥上无砟轨道结构选型提供依据,基于车辆-轨道耦合动力学理论,建立重载货车-无砟轨道-桥梁耦合动力学模型,分析不同轴重货车通过桥上不同类型无砟轨道时的动力响应。结果表明:随着列车轴重的增大,桥上无砟轨道部件的动力响应明显增大;从降低轨道结构位移的角度考虑,优先选取现浇板式无砟轨道和单层长枕埋入式无砟轨道等单层无砟轨道结构;从降低轨道与桥梁的接触应力及桥梁振动加速度的角度考虑,应优先选取单元板式无砟轨道和长枕埋入式无砟轨道等双层无砟轨道结构。重载铁路桥上无砟轨道选型应综合考虑桥上无砟轨道的动力特性、线路特点及其与相关专业的接口等因素综合确定,相关成果可为重载铁路桥上无砟轨道选型提供参考。  相似文献   

18.
针对一种无摇枕悬浮架的新型高速磁浮车辆系统,建立了包含非线性空气弹簧模型、电磁悬浮控制模型的磁浮车辆动力学模型,仿真分析了车辆通过半径530m竖曲线时的动力学响应,并与采用线性等效空气弹簧模型的计算结果进行了对比分析。结果表明,采用两种空气弹簧模型的磁浮车辆车体加速度、电磁铁加速度和悬浮间隙变化量等响应差别不大,均能满足车辆动力学预测要求,但空气弹簧伸缩量计算值有明显差别,两者误差达到29%;采用非线性空气弹簧的磁浮车辆动力学响应结果更符合工程实际,可为高速磁浮车辆空气弹簧结构设计与参数选取提供应用参考。  相似文献   

19.
在吸收国内外研究成果的基础上,建立能够考虑无砟轨道—路基系统各部件间接触状态非线性的列车-路基上板式无砟轨道三维有限元耦合动力学模型,并对建立的三维有限元耦合动力学模型进行相应验证。运用建立的耦合动力学模型,对列车在路基上板式无砟轨道线路上高速行驶时,在列车荷载和无砟轨道温度梯度荷载共同作用下,列车-路基上板式无砟轨道耦合系统动力特性进行研究。研究结果表明:无砟轨道温度梯度荷载对列车-路基上板式无砟轨道耦合动力学系统轮轨力特性影响很小,但对无砟轨道各部件动力特性有显著影响,在进行无砟轨道各部件动力特性研究时,有必要考虑无砟轨道温度梯度荷载的不利影响;对于Ⅱ型板式无砟轨道,无砟轨道温度梯度荷载对列车-路基上板式无砟轨道耦合动力学系统动力特性影响与裂缝间距有很大关系,裂缝间距越小,其影响越小。  相似文献   

20.
研究目的:轨道结构层状梁模型由于模型简单,被广泛应用于轨道动力学及车辆-轨道耦合系统动力学分析中。简化的轨道结构层状梁模型能否反映半无限空间上实际轨道结构的变形规律和动态特性,运用轨道结构层状梁模型得到的车辆和轨道结构动力响应精度如何,这些问题还未见系统研究。本文通过建立车辆-轨道结构层状梁非线性耦合系统动力学模型,构建运用交叉迭代法分别独立求解车辆和轨道结构动力学方程的显示算法,对比分析轨道结构层状梁模型与轨道结构三维块体单元模型的计算结果,以及轨道结构层状梁模型与轨道结构半无限空间模型计算结果的差异,分析轨道结构层状梁模型在车辆-轨道耦合系统动力学分析中的适应性。同时,还对比分析交叉迭代法与传统的耦合方程算法在求解车辆-轨道耦合系统动力响应时的计算效率、计算精度和算法特点。研究结论:(1)采用层状梁轨道模型模拟轨道结构是可行的,计算结果具有良好的精度,能够满足工程问题的分析要求;(2)交叉迭代法相对于传统的耦合方程算法计算效率更高,精度更好,用时更省,程序设计更容易,不仅适用轮轨线性接触分析,而且适用轮轨非线性接触分析;(3)通过引入松弛因子对轮轨接触力进行修正,可加快交叉迭代算法...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号