首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
基于道路行车视距的研究,综合考虑雨天影响下的环境能见度、路面附着系数以及道路平曲线半径、横坡值等参数,构建一种适合多雨地区道路平曲线路段的安全限速计算模型。计算结果表明:降雨强度及雨天条件下的低能见度是影响平曲线路段限速的重要因素,依据计算结果,可对多雨地区的平曲线极限半径进行优化设置,同时针对多种降雨强度给出不同平曲线路段对应的限速设计值。  相似文献   

2.
不同能见度条件下高速公路车辆速度特性研究   总被引:1,自引:0,他引:1  
本文以京港澳高速公路湖北省内金山-武汉南路段内的交通流检测器及其附近设置于路侧的公路气象站的历史数据为主要研究数据,针对雾天低能见度等天气因素,分析有无雾及不同能见度条件对车辆速度均值及速度离散型的影响;研究在雾天条件下,不同车道位置、不同车辆类型、不同时间时段的车辆行驶速度的差异性;基于交通流Greenshield 经典V-K关系,采用非线性回归方法,建立雾天车辆平均行驶速度综合预测模型,模型的拟合优度达到80%.研究成果对研究公路沿线能见度因素对行车安全影响,分析雾天等低能见度条件下的公路通行能力,制定雾天等低能见度条件下可变速度控制等交通控制措施具有重要参考与借鉴意义.  相似文献   

3.
可变限速控制和匝道控制是快速路交通控制的主要手段,本文对两者的协同优化策略进行了研究.借助智能车路协同系统强大的信息感知能力,通过引入微观交通流信息,对经典METANET模型进行了改造,构建了可变限速控制影响下的微观METANET模型,实现了一种新的可变限速控制策略,同时,采用ALINEA算法,对入口匝道进行了优化控制,实现了两者的协同优化.最后,基于实际道路和交通流数据搭建了仿真平台,对微观METANET模型和协同优化策略的有效性进行了验证.仿真结果表明,微观METANET模型具有良好的交通流预测效果,协同优化策略能有效地改善快速路交通流状态.  相似文献   

4.
为了提高海上交通安全风险预警的实用性与精度, 建立了能见度不良天气下海上交通风险预警系统, 由风险矩阵知识库、交通流密度预测子系统与能见度预警子系统组成; 通过采集大样本, 运用不完备信息条件下模糊信息分配理论修正了专家调查法, 确定了海上交通风险矩阵; 采用人工神经网络中极限学习机理论的短时船舶交通流密度预测算法计算了交通流密度; 采用区域大气模式系统对气象和海洋预报部门提供的能见度预报数据进行空间和时间精细网格化划分, 计算了能见距离; 采用系统预测了空间网格为2nmile×2nmile和时间步长为10min的关注海域的能见距离和交通流密度, 以验证系统的有效性。仿真结果表明: 2个不同时间段12个时间点的能见距离预测准确率分别达到75%、75%、80%、75%、80%、75%和75%、75%、80%、80%、80%、75%, 相应的交通流密度预测准确率全部达到80%, 预测结果可靠, 并且, 实现了能见度不良天气下海域航行风险的可视化与智能化监控。   相似文献   

5.
严重的大范围的雾霾天气往往导致道路封闭、交通拥堵等问题,给物流带来了诸多不利影响,造成交通事故时有发生。一、雾霾对交通运输的影响其一,雾霾对公路运输的影响。由于雾霾天气下行车能见度较低及驾驶视野不清,致使驾驶员对道路交通标志、标线等设施辨别效果差,不利于驾驶员对前方和道路环境作出准确的观察和辨识。由于雾霾条件下个别车辆因故障及其他原因违法停车后不及时规范放置警示  相似文献   

6.
针对高流量条件下高速公路主线瓶颈路段交通流运行态势恶劣导致通行效率降低的问题,从高速公路瓶颈路段交通流时空特性出发,对元胞传输模型进行扩展,使其能够对瓶颈路段和可变限速条件下交通流运行情况进行描述;在此基础上,构建可变限速控制模型,并采用阶梯限速控制方法对主线交通流进行控制,防止限速路段车辆排队上溯影响上游匝道车辆的正常通行.算例仿真结果表明:本文提出的瓶颈区域可变限速阶梯控制方法能够有效缩短车辆行程时间,在可变限速条件下,与无控制和仅单路段主线控制相比,车均延误分别减少了13.78%和1.60%.   相似文献   

7.
高速公路可变限速控制的基本原理,根据能见度距离及路面附着力系数计算不同气象条件下允许的高速公路上的最大行车速度。设计开发基于GSM模块的电子限速牌的远程数据无线收发系统,实现高速公路沿线电子限速牌的远程控制,达到对高速公路主线交通流进行速度控制的目的。  相似文献   

8.
科学合理的微观交通流仿真模型是研究交通控制手段有效性的关键.本文结合一种考虑驾驶员视野内前后多车影响的跟驰策略,建立了连续型元胞自动机交通流模型.仿真实验表明,仿真数据与实测数据有较好的拟合性,仿真得到的 K-Q、K-V和 Q-V图能较好地反映实际道路交通流的失稳现象,所建立的模型具有适应不同场景的兼容性与灵活性,能够作为研究我国实际道路交通流问题的仿真工具.  相似文献   

9.
科学合理的微观交通流仿真模型是研究交通控制手段有效性的关键.本文结合一种考虑驾驶员视野内前后多车影响的跟驰策略,建立了连续型元胞自动机交通流模型.仿真实验表明,仿真数据与实测数据有较好的拟合性,仿真得到的 K-Q、K-V和 Q-V图能较好地反映实际道路交通流的失稳现象,所建立的模型具有适应不同场景的兼容性与灵活性,能够作为研究我国实际道路交通流问题的仿真工具.  相似文献   

10.
为实现车辆在信号交叉口区域的节能减排及提高道路通行效率,本文构建基于目标车速关联的油耗排放模型,建立生态驾驶诱导车速控制策略。在加减速通过场景下以油耗、排放和通行时间为优化目标,以道路限速和不停车通过车速为约束,利用多目标遗传算法优化生态驾驶目标车速;基于MATLAB与交通仿真软件VISSIM进行不同算法渗透率及道路饱和度场景下的联合仿真,将仿真结果导入微观排放模型MOVES测算能耗排放。仿真结果表明:控制策略与无控制时相比,在高算法渗透率、低道路饱和度场景下,车辆平均速度提高13.8%,怠速工况比例下降 33%,中速巡航工况比例上升18%,能耗及N2O、NOX、HC、CH4排放分别减少6.6%及12.2%、4.0%、 6.3%、2.9%,CO排放增加2.5%。最后,依据仿真得到不同控制策略下的速度轨迹在底盘测功机上完成实车实验,实验结果表明,基于交通流优化的控制策略与无控制场景相比,能耗及 CO、 CO2、PN排放分别减少53.1%及47.6%、50.4%、39.8%,NOX排放增加13.6%。  相似文献   

11.
为方便交通部门能够更直接地掌握道路交通流状态,对交通流进行管理、调节和诱导,从而提高路网交通效率,本文主要围绕交通流状态统计、交通流状态仿真和不同交通状态的决策方案三个方面进行研究。研究基于物理公式和格林希尔治模型理论构建交通流流量与车辆平均速度的基础模型,根据不同道路的最大流量判断道路交通状态;利用matlab将道路简化为元胞自动机的运动过程进行分析;并根据交通流状态分析结果提出合理的决策方案。  相似文献   

12.
为了分析自动驾驶车辆对交通流宏观特性的影响, 以手动驾驶车辆与自动驾驶车辆构成的混合交通流为研究对象, 提出了不同自动驾驶车辆比例下的混合交通流元胞传输模型(CTM); 应用Newell跟驰模型作为手动驾驶车辆跟驰模型, 应用PATH实验室真车测试标定的模型作为自动驾驶车辆跟驰模型; 计算了手动驾驶与自动驾驶车辆跟驰模型在均衡态的车头间距-速度函数关系式, 推导了不同自动驾驶车辆比例下的混合交通流基本图模型, 计算了混合交通流在不同自动驾驶车辆比例下的最大通行能力、最大拥挤密度以及反向波速等特征量, 依据同质交通流CTM理论建立了不同自动驾驶车辆比例下的混合交通流CTM; 选取移动瓶颈问题进行算例分析, 应用混合交通流CTM计算了不同自动驾驶车辆比例下的移动瓶颈影响时间, 应用跟驰模型对移动瓶颈问题进行微观数值仿真, 分析了混合交通流CTM计算结果与跟驰模型微观仿真结果之间的误差, 验证了混合交通流CTM的准确性。研究结果表明: 混合交通流CTM能够有效计算移动瓶颈的影响时间, 在不同自动驾驶车辆比例下, 混合交通流CTM计算结果与跟驰模型微观仿真结果的误差均在52 s以下, 相对误差均小于10%, 表明了混合交通流CTM在实际应用中的准确性; 混合交通流CTM体现了从微观到宏观的研究思路, 基于微观跟驰模型与目前逐步开展的小规模自动驾驶真车试验之间的关联性, 混合交通流CTM能够较真实地反映未来不同自动驾驶车辆比例下单车道混合交通流演化过程, 增加了模型研究的应用价值。   相似文献   

13.
城市中大量公交专用道的设置在提高公共交通通行效率的同时使原有社会交通的通行能力下降.公交车道时分复用策略的使用使社会车辆在不影响公交车行驶的前提下对专用道进行动态使用,以充分利用道路资源.针对这种应用场景,提出一种考虑公交车限速作用的路段宏观交通流离散模型,仿真结果显示该模型能实现公交道时分复用场景下的交通流演化分析.  相似文献   

14.
为提高高速公路汇流瓶颈区的通行效率,本文结合强化学习无需建立模型,具有智能学习的特点,对瓶颈区的可变限速策略进行了优化,首次提出了基于Q学习算法的可变限速控制策略。策略以最大化系统总流出车辆数为目标,通过遍历交通流状态集合,尝试不同限速值序列进行自适应学习。以真实路段交通流数据搭建了元胞传输模型仿真平台,通过将其与无控制和基于反馈控制的可变限速策略进行对比,对Q学习策略的控制效果进行评价。通行时间的降低和交通参数的变化表明,强化学习控制策略在提高汇流瓶颈区通行效率和改善交通流运行状况方面具有优越性。  相似文献   

15.
考虑当前针对无车道划分时的交通流特性研究较少,而且没有考虑车辆类型的异质性,因此本文基于社会力模型提出了一个无车道划分异质交通流模型.利用仿真软件Matlab搭建仿真平台,分析所建立模型的特性,以及道路条件、大车比例对交通流的影响.结果表明,本文所建立的交通流模型能有效地模拟无车道划分情况下的异质交通流特征.在无车道划分时,道路通行能力和平均速度会随着道路宽度减小而减小,当道路宽度小于7m时,通行能力会急剧下降.当交通流密度比较低时,增加大车比例对道路通行能力和平均速度影响很小;当交通流密度比较高时,大车比例的增加会降低道路通行能力,但交通流会变得更加稳定.  相似文献   

16.
可变限速技术通过自动化采集交通流运行数据,并按照控制策略实时调整限速值以适应交通流运行的时空变化特征。目前,该技术已在美国等西方发达国家广泛推广,在我国尚未开展大规模的实践应用。以我国驾驶员的驾驶行为特性为主要考虑因素,通过采集城市快速路驾驶员驾驶行为特性数据,标定参数得到符合我国驾驶员行为特性的智能驾驶员(IDM)模型,构建微观交通仿真环境,研究快速路可变限速技术在我国驾驶行为环境下的适应性。仿真结果表明,可变限速技术能够在一定程度上改善我国快速路通行效率,但受驾驶行为特性参数差异性的影响,其改善幅度低于国外驾驶环境的快速路交通流。  相似文献   

17.
为提高高速公路汇流瓶颈区的通行效率,本文结合强化学习无需建立模型,具有智能学习的特点,对瓶颈区的可变限速策略进行了优化,首次提出了基于Q学习算法的可变限速控制策略.策略以最大化系统总流出车辆数为目标,通过遍历交通流状态集合,尝试不同限速值序列进行自适应学习.以真实路段交通流数据搭建了元胞传输模型仿真平台,通过将其与无控制和基于反馈控制的可变限速策略进行对比,对Q学习策略的控制效果进行评价.通行时间的降低和交通参数的变化表明,强化学习控制策略在提高汇流瓶颈区通行效率和改善交通流运行状况方面具有优越性.  相似文献   

18.
���Ǽ�ʻƣ�͵�һάԪ���Զ�����ͨ��ģ��   总被引:1,自引:0,他引:1  
为了研究驾驶疲劳对道路交通流运行状态的影响,提出了一种改进的一维元胞自动机交通流模型.在周期性边界条件下,通过分析驾驶员的疲劳特性,考虑驾驶疲劳对驾驶员驾驶行为的影响,分别对疲劳车辆与正常车辆制定各自的演化规则,并以此对车辆进行状态更新,以建立改进的交通流模型.通过计算机仿真实验,得出不同疲劳车辆比例下车流密度、速度与流量的关系数据,并分析了疲劳车辆对交通流安全性的影响.仿真结果表明,对于本文改进的模型,随着道路上疲劳车辆比例的增加,交通流的拥堵呈分散趋势,车辆的拥堵频率显著提高,整体车流的安全性有所下降.同传统的SDNaSch模型相比,能够更好地描述道路交通流的实际运行状态.  相似文献   

19.
为保证车辆在大风及雨雪气象条件下的行驶安全,构建了车辆模型、气象环境模型和道路模型,利用Carsim软件进行仿真模拟分析,考虑不同风级条件下车辆在降雨积水路面、积雪路面和降雪结冰路面上,以特定线形组合为例,选取侧向力系数和侧向偏移量作为评价指标,研究车辆稳定行驶的临界车速.研究给出了不同气象条件下车辆在直线和圆曲线上的限速建议,结果表明:车辆在5级风以上的雨天积水路面,路段线形为直线时,车速应不高于80 km/h,当路段为圆曲线时,应将车速控制在50 km/h以下;车辆在5级风以上的积雪或结冰路面,路段线形为直线时,安全限速值为60 km/h;当路段为圆曲线时,应将车速控制在30 km/h以下.研究结果对恶劣天气下安全驾驶和道路限速提供一定参考,并提供风雨雪作用下车辆安全行驶临界车速的计算方法.  相似文献   

20.
为精准识别不利天气下高速公路交织区的交通运行状态,在传统交通流指标上引入天气因素,建立改进的k-prototypes交通运行状态划分方法。本方法通过分析在不同等级的降雨、能见度、风速下交通流特性的变化特征,确定天气对交通流状态的影响;利用随机森林模型选择交织区各车道交通流运行状态的影响变量;为提高模型精度,引入信息熵衡量k-prototype算法的相异性,并提出聚类效果评价指标衡量状态的有效性。结果表明:考虑天气及交通流特征的高速公路交织区各车道运行状态划分为7类最佳,分别对应《道路通行能力手册》中的各级服务水平。在恶劣天气影响下,交织区各车道服务水平均下降明显,车道1、3平均下降4个等级,车道2、4平均下降3个等级;在中度天气影响下,各车道下降2~3个服务水平。在同一服务等级下车道1、3车流运行最小速度下降范围在11.2~17.4 km·h-1,而车道2、4在21.2~27.4 km·h-1。研究成果可为恶劣天气影响下更精细化的交通管理以及提高高速公路交织区服务水平提供理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号