首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
通过贵阳市贵安新区天河潭路工程,对碗扣式支撑架斜撑、剪刀撑内力进行研究,结果表明对于斜撑在混凝土浇筑过程中内力变化趋势,斜杆上部处于受拉状态,中下部处于受压状态。斜撑杆件上部受拉主要是由于靠近翼缘尖端支架变形较大所致,对于同一高度、不同剪刀撑上测点内力,翼缘下方剪刀撑处于受拉状态,翼缘下方剪刀撑下部拉力大于上部。混凝土浇筑前箱梁下方靠近外侧剪刀撑上部处于受拉状态,混凝土浇筑后处于受压状态。下部始终处于受拉状态;剪刀撑靠近中轴线上部处于受压状态,下部在混凝土浇筑浇筑前处于受拉状态,浇筑后处于受压状态。  相似文献   

2.
支架搭设的质量控制 测量放样。支架搭设前首先进行支架布置及支架高度计算,并根据支架布置桩号进行放样,以确定第一排支架位置,由于底托受横坡影响,底托设计高出垫块顶20cm,以调整横坡影响,支架搭设前,应先将底托抄平并挂线,保证立杆底放在同一水平面上,然后开始支架搭设。支架搭设按以下方法布置,横向步距0.9m,纵向步距0.9m。水平横杆步距0.6m。支架搭设过程中应保证立杆碗扣将横杆全部扣住并锁紧,以保证支架良好受力。为保证支架整体的稳定性,将支架外三排立杆全部用1.5寸钢管,打斜撑加固,纵向斜撑每隔2.7m加固一道,横向斜撑每隔1.9m加固一道。支架搭设完毕后,应再次检查支架横杆连接情况,保证每个节点处全部锁死。在支架验算时考虑梁体自重、模板重量、支架重量、施工荷载等。  相似文献   

3.
针对目前改扩建项目中,由单一标高差拼接引起的早期路面病害问题,采用有限元对不同标高差下的拼接方式进行了力学响应分析。分析结果表明:由于新旧路面标高差的变化,拼接所产生的台阶数亦跟随变化;外侧新建车道受台阶数和拼接宽度的影响相对较小;内侧车道沥青层受力基本为拉力,水稳层受压力;接缝自下而上,受力逐渐敏感;接缝越靠近轮迹带,受力越大,当位于轮迹带下时,基本为非轮迹带下的1.5倍。  相似文献   

4.
针对斜拉桥应力可靠度分析过程中功能函数难以显式表达的问题,基于支持向量机法,根据可靠度理论得到了基于支持向量机的桥梁可靠度分析方法。以国内某斜拉桥为工程实例,建立了该桥斜拉索应力极限状态方程以及主塔应力极限状态方程,通过基于支持向量机的桥梁可靠度计算方法,得到了该桥斜拉索的应力可靠度以及主塔应力可靠度。结果表明:越靠近斜拉桥的主塔,斜拉索的应力可靠度指标越大;主塔与主梁相接位置的上部可靠度指标呈现递增趋势,距离主塔与主梁相接位置越远,主塔单元的可靠指标越大;主塔应力可靠度指标的最小值出现在主塔与主梁相接位置上部第1个单元,主塔与主梁相接位置下部各单元的可靠指标均较大。  相似文献   

5.
双幅桁架组合梁是通过横向联结系将A,B两个单幅桁架组合梁连接到一起组成新结构,为了了解该组合梁的受力性能、变形能力、破坏机理以及各个杆件的内力分布规律等,设计并制作试件,通过对试验梁A幅静力加载试验,分析其位移、沿截面高度纵向应变、混凝土板顶纵向应变、斜腹杆轴向应变以及横向联结系轴向应变随荷载的发展变化。通过ABAQUS有限元分析软件建立相同试件模型并且后处理,比较试验研究成果,验证模型的合理性。研究表明,施加单幅对称荷载时该组合梁具有良好的承载能力和变形能力;破坏形态为A幅弯曲破坏的同时伴随着受拉腹杆节点的冲剪破坏,B幅仅斜腹杆受轴力且影响较小;剪力滞系数在梁肋处达到峰值,说明梁肋处应力分布最不均匀,系数纵向影响范围只位于加载点附近,变形集中于中间区域;下弦杆除了承受轴向力,弯曲效应对杆件的受力影响较大,不容忽视。  相似文献   

6.
采用有限元软件Geo-Slope中的SEEP/W模块分析了裂隙深度、渗透系数比、裂隙角度与裂隙数对雨水入渗过程的影响,结合非饱和渗流理论研究了裂隙渗流各向异性对边坡稳定性的影响。分析结果表明:降雨1、7 d时,1 m裂隙深度内最大孔隙水压力分别为9.69、9.70 kPa,雨水沿裂隙底部向下的入渗深度分别为0.5、1.5 m,裂隙内孔隙水压力随降雨的持续迅速增大,直至由负压力转变为正压力; 裂隙深度越大,裂隙内孔隙水压力越大,降雨停止时刻相应的入渗深度也越大,饱和区域的大小与裂隙深度正相关; 当渗透系数比为1时,裂隙范围内最大渗透系数为1.51×10-7 m?s-1,此时沿裂隙方向渗透系数小于降雨强度,降雨入渗过程受土体渗透系数控制,而当沿裂隙方向渗透系数大于降雨强度时,雨水入渗过程受降雨强度控制; 裂隙角度越小,在裂隙深度范围内的最大孔隙水压力越大,且出现正孔隙水压力的深度也越大,而边坡表层饱和区范围越小; 无裂隙存在时,降雨后边坡内部仍保持负压力状态,无饱和区存在,有裂隙存在时,雨水沿裂隙下渗并在边坡内部形成饱和正压力区,1~5条裂隙形成的饱和区面积分别为16.4、34.7、60.9、75.6、110.7 m2,饱和区面积与裂隙数呈乘幂关系,且随着裂隙数的增加,雨水对渗流场的影响范围与程度增大,长裂隙的集中分布是引起边坡内部大面积连通型饱和区出现与地下水位升高的直接原因。   相似文献   

7.
为了揭示偏载作用下大长径比水润滑尾轴承的流体动力学行为, 提出了分布式动力学特性参数测试方法; 在船舶大型推进轴系模拟试验台上, 以直径为324 mm、长度为1 200 mm的大尺寸水润滑尾轴承为试验对象, 在轴承上、沿轴线方向选取3个截面, 每个截面布置相互垂直的2个电涡流传感器, 以获取轴心轨迹; 在转轴上、沿轴线方向选取4个截面, 每个截面各布置1个微型压力传感器, 并随轴一起旋转, 采用无线遥测技术获取4个截面的全周水膜压力分布; 通过改变相邻轴承的标高来调整转轴倾斜程度, 研究了转速和标高对试验轴承水膜压力分布和轴颈运行状态的影响规律。研究结果表明: 偏载导致离悬臂端最近的截面压力测试值明显大于其他截面, 最大值约为3.6 MPa; 轴承的润滑状态沿轴向呈现分区特性, 越靠近悬臂端, 弹流润滑特征越明显, 且不同的轴承分段需要不同的速度来产生动压水膜; 离悬臂端最近的截面压力曲线顶部的“水囊”随转速升高而出现, 但在220 r·min-1时变得不明显, 各截面压力分布出现明显的负压现象; 轴颈在轴承孔中的空间形态较复杂, 在轴承两侧严重下弯, 在中部拱起, 并且不同轴承截面的偏位角不同, 离悬臂端越远, 轴心轨迹面积越大。可见, 与具有单一润滑状态和直线轴颈的滑动轴承相比, 偏载下大长径比水润滑尾轴承的流体动力学模型应考虑轴向润滑状态分区、弯曲轴颈和负压等因素。   相似文献   

8.
高墩高架桥的桥墩受横向荷载非常敏感,意外堆土对高架桥既有桥墩可能产生重大影响,必须加以控制。为评估意外堆土对某高墩高架桥结构受力性能的影响,通过现场调查,考虑了堆土的侧向刚度,采用midas有限元分析软件建立模型分析了堆土对桥墩及主梁受力性能的影响,理论分析表明:若没有上部结构对桥墩的支撑作用,在上述意外堆土荷载作用下,墩内最大拉应力将接近8 MPa。考虑上部结构对桥墩提供的有效支撑后,在最不利意外堆土压力与恒载的共同组合下,2#桥墩最大会产生约1.13 MPa拉应力,但小于C30混凝土的抗拉强度标准值2.01 MPa。基于分析结果对意外堆土后的桥梁状态进行了评估,并提出了相应的处理建议,可为同类事故的分析和处理提供参考。  相似文献   

9.
为研究提高钢-混凝土组合连续弯箱梁抗火性能的策略,选取某三跨钢-混凝土组合连续弯箱梁为研究对象,利用通用有限元软件ANSYS建立了其在火灾下的三维非线性两阶段分析模型;基于已有热-结构耦合分析方法,模型考虑了钢箱梁内空腔辐射传热过程和其上翼缘与混凝土板的接触边界条件;将模型得到的预测结果与试验数据进行了比较,验证了模型的可靠性;采用建立的模型在不同纵向受火位置、火灾强度和荷载水平作用下对钢-混凝土组合连续弯箱梁跨中挠度进行了参数敏感性分析,研究了其极限承载能力和刚度衰变规律;以火灾下跨中挠度为评估指标,提出了针对钢-混凝土组合连续弯箱梁的抗火设计方法。研究结果表明:在对称火和结构荷载作用下,钢-混凝土组合连续弯箱梁外边缘挠度大于内边缘挠度,且荷载越大,火灾越严重,这一效应越显著;在油罐车等过火面积较大的火灾作用下,刚度较极限承载能力衰退更快,与常温下的钢-混凝土组合连续弯箱梁极限承载能力和刚度相比,边跨受火16 min时极限承载能力和刚度分别降低至29%和14%,中跨受火28 min时极限承载能力和刚度分别降低至31%和22%;在钢-混凝土组合连续弯箱梁抗火设计中,应首先提高外侧钢箱梁在火灾下的刚度,增多和加宽外侧钢箱梁底板纵向加劲肋可使边跨受火20 min后内外侧钢箱梁跨中挠度差分别减小23%和30%,中跨受火32 min后内外侧钢箱梁跨中挠度差分别减小22%和27%。   相似文献   

10.
为研究采用拉脱法检测预应力钢绞线受力时, 张拉力荷载测试曲线突变段和夹片咬合力的关系, 在夹片脱开时, 采用电阻式压力传感器高频采集技术测试了预应力混凝土梁锚具下方和锚具外侧钢绞线的受力, 共测试了20个样本; 设计了夹片咬合力测试方案, 共测试了326个样本, 并进行了统计分析, 建立了考虑张拉力的夹片咬合力计算公式; 通过37个样本的验证性测试, 研究了咬合力修正结果的测试精度; 在实际工程中检测了257个样本, 并将实测结果与提出的公式计算结果进行对比。研究结果表明: 当钢绞线伸长超过4.5 mm时, 夹片会脱离原有咬痕, 而实际测试中夹片脱开时会及时停止张拉, 因此, 拉脱法测试不会改变预应力钢绞线锚下有效预应力, 不会影响工程质量; 夹片安装时, 若夹片与锚杯锥孔不完全贴合, 会使夹片在横向产生较大的弹性挤压力, 形成附加摩擦力, 该摩擦力需要在夹片退出至与锚杯分开时才能完全消失, 此时锚外张拉力变化不明显, 因此, 拉脱法测试所得张拉力曲线中峰值拉力后的下降段斜率存在离散性, 与夹片安装精度有关; 拉脱法测试中夹片与锚杯的咬合力由锚下和锚外瞬态内力重分布累加组成, 提出的夹片咬合力计算公式能剔除由夹片与锚杯间咬合力产生的测试误差, 可使测试精度提高6.78%;实际工程现场实测夹片咬合力大于拉脱法测试所得张拉力曲线突变段, 因此, 采用拉脱法检测预应力钢绞线时, 锚下有效预应力为拉脱法测试所得张拉力曲线峰值与咬合力的差值。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号