首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
软化点是评价改性沥青高温性能的重要指标,为了研究SBS改性沥青软化点特性及其影响因素,采用软化点试验方法,对经过高温储存和常温储存以及短期老化和长期老化后SBS改性沥青的软化点进行了测试。结果表明:改性沥青的软化点表现出复杂的变化规律,其变化与改性沥青的配伍性有关;基质沥青对改性剂的溶胀以及改性剂对沥青的吸附是改性沥青初期性能和储存稳定性的关键,而改性剂在存储和老化条件下的变化是软化点发生变化的根源。  相似文献   

2.
《公路》2017,(10)
为揭示老化SBS改性沥青的再生规律和指导再生沥青设计,分别测试了应用新SBS改性沥青和再生剂再生老化SBS改性沥青的性能,并回归了再生沥青性能与新沥青、再生剂掺量的关系。研究结果表明,再生SBS改性沥青的高温性能好,低温性能不能得到有效地改善,必须采取新SBS改性沥青与再生剂复合再生方式。由于SBS改性剂交联网络结构在老化前后的差异,再生SBS改性沥青软化点随新沥青和再生剂掺量的增加呈现出相反的发展趋势。再生SBS改性沥青的黏度、针入度与新沥青、再生剂掺量之间非线性关系可采用两相液体混溶模型描述,软化点、延度与新沥青或再生剂掺量之间分别具有良好的线性和指数关系。  相似文献   

3.
SBS改性沥青因其良好的高温稳定性、低温抗裂性和出色的粘附性与耐疲劳性,在高等级公路工程应用越来越广泛。文中分析了改性沥青软化点、针入度、延度三大指标与沥青性能的关系;以国产 SBS改性剂、70# A级道路石油沥青为试验检测对象,对南方地区 SBS改性沥青生产最佳配合比进行设计研究,分析了 SBS改性剂剂量与改性沥青相关技术指标的关系。  相似文献   

4.
通过沥青针入度、软化点、布氏旋转黏度、DSR试验,评价两种类型的改性沥青(SBS改性沥青、纳米SiO_2-SBS复合改性沥青)在不同改性剂用量下(3.5%、4%、4.5%、5%)的高温性能。结果表明:SBS改性剂和纳米SiO_2-SBS复合改性剂均能有效改善沥青的高温性能,且改性沥青的高温性能随改性剂用量的增加而提高;纳米SiO_2-SBS复合改性沥青的高温性能较SBS改性沥青更好;改性剂用量较大时,采用纳米SiO_2-SBS复合改性剂,能够降低生产成本,提高沥青路用性能。  相似文献   

5.
为了评价老化对SBS改性沥青流变特性,对基质沥青、SBS改性剂质量掺量分别为3%和6%的改性沥青进行旋转薄膜加热试验(RTFO)和不同时间(5h、16h、50h)的压力老化试验(PAV),对3种沥青的原样、不同老化状态的样品进行常规试验(针入度、延度、软化点)和不同温度条件下的动态剪切流变试验。试验结果表明:常规指标只能显著反映沥青前期阶段的老化性能,粘弹性指标能够反映各老化阶段沥青的性能,更适合评价沥青的老化特性;基质沥青老化表现出硬化的特性,PAV老化50h后的SBS改性沥青老化由于SBS改性剂的裂解和断裂,表现出软化的特性;SBS改性剂使得沥青储能模量随温度和老化程度的影响变小,改善了沥青的感温性能、耐老化性能;老化时间越长基质沥青高温性能越好,而SBS改性沥青在老化16h后高温性能降低。  相似文献   

6.
《公路》2017,(6)
为薄层罩面实际工程选择适宜的沥青胶结料及专用改性沥青的开发研究,选用4种常用的沥青(高黏沥青、橡胶沥青、SBS改性沥青、橡胶粉/SBS复合改性沥青)进行针入度、软化点、延度、布氏黏度、弹性恢复、动态剪切流变、沥青黏附性等试验,对比分析4种沥青路用性能。研究表明:参考《公路沥青路面施工技术规范》与NovaBinder标准进行选材时高黏沥青与复合改性沥青适宜于薄层罩面;除温度敏感性和与集料黏附性外路用性能皆为高黏沥青复合改性沥青SBS改性沥青橡胶沥青;高黏沥青综合性能优于只添加了橡胶粉或SBS改性剂的橡胶沥青、SBS改性沥青和复合改性沥青,但价格昂贵,复合改性沥青较橡胶沥青与SBS改性沥青高低温性能都有了一定程度的提升但刚满足NovaBinder标准要求且与高黏沥青性能差距较大;因此最终提出开发研究薄层罩面专用沥青时可将高黏沥青中组分与橡胶粉、SBS进行复合改性,在提高沥青胶结料路用性能的同时降低改性沥青成本。  相似文献   

7.
在高温高速剪切条件下制备3%、4%、5%、6%掺量的SBS、SBR聚合物改性沥青,测试沥青的常规性能指标;基于多应力蠕变恢复试验(MSCR),研究聚合物改性沥青在100 Pa和3 200 Pa应力条件下的应变特性;采用灰色关联度方法分析沥青常规性能指标与平均应变恢复率R(P)和平均不可恢复蠕变柔量Jnr(P)的相关性。结果表明,在基质沥青中掺入SBS、SBR均能够有效改善沥青的路用性能,使沥青的针入度降低,软化点、延度、弹性恢复增大;加入改性剂后沥青的R(P)增大,Jnr(P)减小,SBS改性剂能够增大沥青复合模量中的弹性成分,进而提高沥青的蠕变恢复能力,SBR改性沥青的柔性变形能力优于SBS改性沥青;聚合物改性沥青在不同应力条件下的蠕变规律具有显著差异,在低应力条件下的蠕变恢复能力更强;聚合物改性沥青的常规性能与其平均应变恢复率R(P)和不可恢复蠕变柔量Jnr(P)具有良好相关性,可以采用蠕变性能指标来评价聚合物改性沥青的路用性能。  相似文献   

8.
为了在有限样本条件下得到高黏改性剂优选基质沥青的控制指标,对境内外2种高黏改性剂与4种常用基质沥青进行配伍性试验,并以针入度、软化点、低温延度、60℃动力黏度及170℃布氏黏度为控制指标,从而得出配伍性最佳的基质沥青,然后分别对每种基质沥青进行针入度、软化点、延度等全套常规性能试验和不同老化程度的温度扫描、频率扫描等流变性能试验,运用灰色关联度分析方法定量给出基质沥青性能指标对高黏改性沥青控制指标的影响。试验结果表明,不同来源基质沥青的常规性能、流变性能及其与高黏改性剂的配伍性各不相同。G2和TPS高黏改性剂与壳牌(泰国)基质沥青的配伍性最好,并且G2高黏改性剂的适配性比TPS高黏改性剂好。不同来源的基质沥青常规性能和流变性能各不相同,其中部分性能指标存在较大差异。同时,高黏改性沥青控制指标与基质沥青的常规性能指标和流变性能指标之间存在较好的相关性,通过控制基质沥青的常规性能指标和流变性能指标,可以优选出与高黏改性剂适配的基质沥青。其中,高黏改性沥青控制指标与基质沥青的流变性能指标灰色关联程度更高。  相似文献   

9.
文中通过在基质沥青中添加一种改性剂制得改性沥青(作者参与的发明专利:沥青抗紫外老化改性剂及其制备工艺ZL2014 1 0530109. 6)并和基质沥青、SBS改性沥青、橡胶沥青进行比对性紫外线老化试验,通过红外光谱对其紫外线老化前后的官能团变化率进行分析,并且通过对针入度、延度和软化点等指标对比分析,结果表明该抗紫外改性沥青具有较好抗紫外线老化能力。  相似文献   

10.
通过室内试验,采用软化点试验、针入度试验和布式黏度试验对添加SNJ温拌剂的基质沥青和SBS改性沥青的中高温流变性能进行评价;采用弯曲梁流变试验对SNJ温拌剂的SBS改性沥青的低温流变性能进行评价。试验结果表明:掺加SNJ温拌剂后,基质沥青和SBS改性沥青的针入度下降、软化点升高、135℃布氏黏度显著下降。从弯曲梁流变试验来看,SNJ温拌剂的加入会引起基质沥青和SBS改性沥青劲度模量上升和蠕变速率的下降,低温性能明显下降。相比较而言,SNJ温拌剂对于基质沥青低温性能的不利影响更加显著,高掺量SBS下的复合沥青具有一定能力弥补温拌剂的不利影响。  相似文献   

11.
通过将SBS改性剂及石墨烯混合后掺入基质沥青中制备SBS-石墨烯复合改性沥青,测量其针入度、软化点和延度。同时使用动态剪切流变仪(DSR)对SBS-石墨烯复合改性沥青进行温度扫描试验。结果表明,石墨烯的加入有效改善了SBS改性沥青的高温性能,对SBS改性沥青产生了硬化效果,削弱了沥青的低温抗拉能力。随着温度的上升,石墨烯能有效减缓SBS改性沥青弹性成分的流失,提高其抗车辙能力。  相似文献   

12.
为了研究SBS改性沥青的微观老化机理,选择壳牌70~#基质沥青和3501线型SBS为原材料,通过室内高速剪切设备制备了SBS掺量分别为3%,4%,5%的SBS改性沥青。采用常规指标试验、傅里叶变换红外光谱、荧光显微镜分析了不同SBS掺量的改性沥青在不同老化时间下的性能指标、化学组成和微观分布的变化规律。采用双键保持率和凝胶含量分析了SBS改性剂随着热氧老化时间延长的变化规律。结果表明:随着老化时间延长,SBS改性沥青的针入度和延度逐渐下降,针入度指数上升,当量软化点增高;当SBS掺量小于5%时,针入度显著下降,软化点逐渐上升,而当SBS掺量为5%时,出现针入度降幅先大后小,软化点先降后升的两阶段变化;随着老化时间延长,BI指数逐渐下降,CI指数和SI指数均上升,这说明沥青老化过程中主要发生的是吸氧反应,生成羰基和亚砜基;老化85 min时,改性剂颗粒进一步吸收沥青中的轻质组分溶胀并部分溶解,此时分布状态接近两相连续结构,进一步证实了两阶段变化是5%掺量改性沥青的特征;随着热氧老化时间延长,SBS双键保持率下降,凝胶含量上升,表明SBS改性剂在老化过程中既发生了降解,又发生了交联反应,且降解和交联的速率随着老化时间延长而增大。  相似文献   

13.
以SBS改性沥青400倍荧光显微图像为研究对象,借助MATLAB图像处理功能,提出一种SBS改性剂在SBS改性沥青中所占面积比的计算方法。按照新方法确定了SBS剂量为3%,4%,5%的SBS面积比,并在二维荧光显微图片中通过改性前后SBS改性剂与基质沥青质量、密度、体积的换算得到SBS改性剂膨胀的倍数,分析了SBS面积比与SBS掺量、针入度、软化点、延度的关系。结果表明:该方法可以在30 min内完成SBS面积比的计算;SBS改性剂在3%,4%,5%质量比掺量下的SBS面积比分别为23.25%,37.22%,44.33%,改性后SBS改性剂分别膨胀了6.13,6.68,6.12倍;在SBS质量比3%~5%范围内,SBS掺量越多,SBS面积比就越大;随着SBS面积比的增大,软化点、延度随之增大,针入度随之递减;荧光显微图片中SBS面积比较大的SBS改性沥青具有较高的改性性能。  相似文献   

14.
为研究改性生物沥青的常规性能,对其进行针入度、软化点和延度试验,考察生物沥青与改性沥青按照不同比例混合后各性能的改善.试验结果表明:生物沥青与改性沥青混合后,其针入度值随着改性沥青比例的增大而减小;对改性生物沥青进行温度稳定性分析可知,两种生物沥青本身高温性能就好,当与改性沥青混合后,软化点降低,影响高温性能;生物沥青与改性沥青混合后,其延度都有很大程度的提高,改善了生物沥青低温下硬脆的缺点,特别是SBS改性沥青和SBR改性沥青作用最大.并且随着改性沥青所占比例的增大,效果越好.  相似文献   

15.
新型无卤阻燃沥青的开发与性能试验   总被引:1,自引:0,他引:1  
通过向SBS改性沥青中添加无卤阻燃剂的方法开发了新型无卤阻燃沥青,并对SBS改性沥青和新型无卤阻燃沥青进行了胶结料和混合料的性能试验。对SBS改性沥青及阻燃沥青胶结料针入度试验、软化点试验、弹性恢复试验及氧指数试验进行了分析,结果表明阻燃沥青胶结料的针入度、软化点及弹性恢复性能与SBS改性沥青相比变化不大,而氧指数得到了较大的提高,较好地改进了阻燃性能。对SBS改性沥青及阻燃沥青混合料进行了车辙试验、小梁弯曲试验、水稳定性试验及疲劳试验,结果表明新型无卤阻燃沥青混合料的高温稳定性、低温抗裂性、水稳定性能和抗疲劳性能与SBS改性沥青混合料相比变化不大,仍然具有较好的路用性能。因此,该无卤阻燃沥青是一种比较理想的阻燃沥青。  相似文献   

16.
通过对比新型反应型弹性体三元共聚物(RET)改性剂与SBS、SBR在不同掺配比例下复合改性沥青老化前后的针入度、软化点、延度、布氏旋转黏度、BBR和DSR试验,确定了RET改性沥青及RET复配改性沥青中各种改性剂的掺量范围,在此基础上,采用马歇尔、车辙、低温弯曲、冻融劈裂、浸水马歇尔和疲劳试验综合分析了RET及RET复配低剂量SBS、SBR改性沥青混合料的路用性能。结果表明:RET改性剂能够明显改善沥青混合料的高温稳定性、水稳定性和疲劳性能,采用复配SBS或SBR的改性方法能够弥补RET改性剂对沥青混合料低温抗裂性能的负面影响。综合考虑经济性、兼顾高低温性能,推荐RET与SBS、SBR复合改性沥青中,适宜的RET掺量为1.0%~1.5%,SBS、SBR合理掺量为2.0%~2.5%。  相似文献   

17.
选用20、40、80目3种橡胶粉,按15%、18%、21%、24%四种比例掺入70#基质沥青配制橡胶改性沥青,对改性沥青进行针入度、延度、软化点试验。结果表明:基质沥青经过不同粒径的橡胶粉改性后,沥青软化点和当量软化点升高,针入度降低,针入度指数增大,沥青温度敏感性降低,综合性能得到提高。  相似文献   

18.
崔平 《中外公路》2021,41(5):292-295
利用高速剪切法制备纳米CaCO3/TiO2/SBS复合改性沥青,采用正交试验,通过常规性能试验确定复合改性沥青中3种改性剂的最佳配比,并对比分析了基质沥青、SBS改性沥青和复合改性沥青高温和低温时的流变性能.结果 显示:复合改性沥青中改性剂的最佳配比为:1%纳米TiO2 +4%纳米CaCO3 +4% SBS;与基质沥青和SBS改性沥青相比,复合改性沥青具有更好的高温抗车辙能力,但耐疲劳性能低于SBS改性沥青;复合改性沥青的施工温度比基质沥青和SBS改性沥青分别高20℃和5℃;复合改性沥青的低温性能优于基质沥青,但比SBS改性沥青的低温性能差.  相似文献   

19.
采用SBS、高粘弹改性剂制备一种复合高粘弹改性沥青,通过针入度、软化点、延度、60℃动力粘度、135℃旋转粘度、弹性恢复等参数试验,评价其沥青的常规性能与粘弹性能,确定了高粘弹改性剂的最佳掺量.基于此,评价其混合料的高温性能、水稳定性、低温抗裂性及疲劳性能.结果表明,与SBS改性沥青相比,SR-1高弹剂的掺量为8%时,...  相似文献   

20.
冉龙飞  何兆益  黄维蓉 《公路》2011,(5):162-167
通过对不同掺量纳米膨润土及SBS、PE聚合物改性沥青的针入度、软化点等技术指标研究,确定了6种改性剂在基质沥青中的最佳掺量.采用DSR、BBR等方法对沥青的高温稳定性、低温抗裂性等路用性能进行研究,并采用SHRP手段对沥青进行分级,基质沥青为PG64-12,纳米增强基质沥青为PG70-12,说明有机膨润土改性沥青具有较...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号