首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
高速铁路声屏障声学计算模式研究   总被引:2,自引:0,他引:2  
基于多通道阵列式声源识别系统和多通道噪声振动实时采集分析系统,对京津城际和京沪高速铁路列车运行状态下的噪声源、空间声场分布以及声屏障降噪效果进行测试和分析。将高速列车声源等效为下部噪声和上部噪声两部分:下部噪声以轮轨噪声和车体气动噪声为主,其声源等效位置确定为轨面以上0.6m处;上部噪声以弓网噪声为主,其声源等效位置确定为轨面以上3.3m处。由此提出基于双声源作为等效声源和以1250Hz作为等效频率的高速铁路声屏障声学计算模式,给出声屏障插入损失和加长量修正计算公式,所得到声屏障的声学计算结果与实测结果吻合。  相似文献   

2.
基于我国高速铁路噪声源定量化识别分析结果,研究不同速度条件下动车组主要噪声源分布及变化规律,发现列车高速运行时轮轨噪声和气动噪声均为主要噪声源,且2种声源存在严重混叠,既有测试技术无法有效区分。针对既有轮轨噪声计算时声源过度简化问题,利用1∶1全尺寸高速轮轨滚动试验台开展从100 km/h提速至350 km/h的滚动噪声试验,研究纯轮轨激励条件下声辐射特性,构建反映轮对运动轨迹、相干声源特性的轮轨滚动噪声预测模型。现场试验表明,模型预测值和现场实测值在关键频带一致,列车通过等效连续A声级的预测值和实测值之差小于0.5 dB(A),模型精度良好。  相似文献   

3.
介绍高速动车组声学性能、各系统之间相互作用关系及噪声源分类,分析车辆自身噪声产生的机理以及各声源的贡献与总响应关系,通过对高速动车组声源噪声传递路径识别及车体、转向架区域噪声传递试验研究,总结转向架区域噪声变化的5项规律,提出对高速动车组噪声进行系统分析、统筹规划、分区域治理的观点。  相似文献   

4.
铁路车辆地板下装有电动机、发动机等动力装置以及传递动力的联轴节和齿轮装置,除此之外,还有逆变器等控制装置。这些装置会产生各种各样的噪声,为了弄清这些噪声并采取降噪措施,必须快速定位噪声源并明确噪声传递路径。介绍了能够成像显示噪声源中心位置及噪声强度的波束成形法等最新的噪声源可视化技术,以及利用该技术分析齿轮装置噪声的案例。  相似文献   

5.
高速铁路噪声源区划及各区域声源贡献量分析   总被引:2,自引:1,他引:1  
研究高速铁路噪声源区划方法并分析各区域声源贡献量,对高速铁路噪声治理有重要意义。基于高速铁路噪声源辨识现场测试,分析得到噪声源的位置和幅值。将噪声源按高度划分为轮轨区、车体下部、车体上部、集电系统和桥梁结构等5个区域,进一步将车体上部沿线路方向划分为车头区和非车头区,将集电系统区域沿线路方向划分为受电弓区和接触网区。根据声波能量叠加原理计算每个区域噪声源辐射功率,研究各个区域声源贡献量。分析结果表明,列车以300 km/h运行时,轮轨区噪声占48%,车体下部噪声占25%,合计占总噪声的73%,对高速铁路辐射噪声起主导作用。  相似文献   

6.
为提高高速动车组的乘坐舒适性和优化隔音降噪设计,对高速动车组噪声源进行研究分析,介绍了高速动车组典型位置客室内噪声水平,分析了不同速度级下噪声的主要来源,指出高速动车组运行时的主要声源来自于轮轨噪声和气动噪声,当以速度200 km/h运行时客室内部主要噪声源来自于轮轨噪声,而随着速度级的提高,气动噪声的作用逐渐突显,当以速度300 km/h运行时气动噪声逐渐成为主导。  相似文献   

7.
根据地铁高架线噪声主要组成及频谱特性,分析了现有单噪声源及传递计算方法的不足,提出了更符合实际工况的双噪声源及传递计算方法。在此基础上利用Cadna A软件将双声源噪声传递计算方法进一步细化为多源分频噪声源及传递仿真计算模型,为地铁高架线噪声分析及控制提供了新思路。  相似文献   

8.
为推动噪声地图在高速铁路噪声管理中的应用,研究噪声预测模型与地理信息系统(GIS)相结合的高速铁路噪声地图绘制技术。首先,根据高速铁路噪声源分布特征和线路结构特征,优化高速铁路多等效声源预测模型和声屏障插入损失计算方法;其次,在GIS软件中搭建某高速铁路三维地理信息模型,二次开发基于该模型的铁路噪声预测技术;然后,进行离散节点的噪声计算,并通过空间插值绘制连续的噪声分布地图。研究结果表明:采用该技术绘制的我国某高速铁路噪声地图与实测结果对比误差小于1 dB(A),验证了该高速铁路噪声地图的准确性和实用性,可作为铁路噪声管理部门制定噪声控制对策的参考依据。  相似文献   

9.
在目前已运营高速铁路噪声源特性测试的基础上,对高速铁路声源组成、声场分布特性、频谱特性、距离衰减特性进行分析研究,提出高速铁路声环境影响评价与普通铁路的不同之处,对高速铁路声环境影响评价中声源位置的确定、高速铁路桥梁段噪声预测关注事项、距离衰减预测等提出了建议;另外,通过总结分析目前已运营高速铁路沿线噪声等效声级测试结果,结合中国高速铁路列车运行速度高、运营密度大等特点,提出中国高速铁路声环境影响评价宜执行的噪声标准。  相似文献   

10.
高速铁路桥梁声屏障插入损失五声源预测模式研究   总被引:4,自引:1,他引:3  
研究一种高速铁路桥梁声屏障插入损失的五声源预测模式,可应用于时速300 km以上高速铁路声屏障声学设计。对高速铁路噪声源进行现场辨识测试,分析其声源特性,将高速铁路噪声源简化为轮轨区、车体下部、车体上部、集电系统、桥梁结构5个等效噪声源。根据单声源模式的声屏障插入损失预测公式,结合不同车速下声源等效频率和噪声贡献量,同时考虑桥梁翼板对声传播的影响,形成五声源模式的声屏障插入损失预测公式。采用该方法计算2.15 m声屏障插入损失并与现场测试数据对比,结果显示距离线路25~50 m处受声点插入损失预测结果与实测结果吻合度最高。  相似文献   

11.
噪声是生产活动中常见的重要危害因素之一。在职业安全健康管理体系的建立和运行中 ,必须要做好噪声危害的辨识和风险评价。为便于操作 ,可将生产性噪声分为“设备噪声”、“设备作业噪声”、“人工作业噪声”、“其他作业噪声”4大类 ,按部门、设备、加工过程、岗位等进行现场全面调查和逐一分析。同时 ,结合现场观察、测量分析、职工意见及以往测量调查、体检等相关资料 ,在掌握噪声源特点、分布、声级大小、变化特点、作用时间长短及其危害情况等必要数据的基础上 ,对噪声危害事件发生的可能性及其可能造成的后果做出分级评价 ,找出风险高的重大危险源 ,以作为整个体系运行重点严加控制的对象  相似文献   

12.
上海轨道交通3号线对沿线不同人群的噪声影响研究   总被引:1,自引:0,他引:1  
采用现场监测和公众参与相结合的方法,调查和评价了上海轨道交通3号线对沿线居民、学校师生和商务楼办公人员的噪声影响。评价结果表明:3号线列车运行噪声对沿线居民影响较大,对沿线商办楼和学校的影响相对较轻, 且居民在采取噪声防护措施方面相对较为困难。3号线现有噪声防治措施无法完全解决其噪声影响问题。建议今后在人口密集区应采用地下轨道交通。  相似文献   

13.
美国城市轨道交通工程噪声环境影响评价标准探析   总被引:2,自引:0,他引:2  
通过对美国城市轨道交通工程噪声影响评价标准实质内容及其制定依据的全面分析 ,并依据该标准的特点 ,提出了我国城市轨道交通工程噪声影响评价和控制标准的制定和改进建议。  相似文献   

14.
通过对通辽站站场边界噪声测量以及对测量结果的分析,初步了解了铁路客运站站场边界噪声污染规律:垂直断面噪声分布是一条外凸曲线;水平面噪声分布呈驼峰状;在噪声组成上,鸣笛噪声占相当大比重.  相似文献   

15.
铁路通信用高频开关电源为铁路通信网络提供动力,杂音电压是衡量开关电源质量优劣的重要电参数,电源杂音超出规定值会影响通信网络的正常运行。详细分析各项杂音电压内涵及其对通信设备产生的影响,并介绍杂音电压的测试方法。  相似文献   

16.
日本高速铁路噪声预测方法   总被引:2,自引:0,他引:2  
日本在设计、建设北陆新干线时采用的高速铁路噪声预测方法,是根据高速铁路噪声的特点,按车辆下部噪声、构筑物噪声、集电系噪声、车辆上部空气动力噪声分别计算后合成,预测受声点处的噪声级。该方法对我国高速铁路和客运专线铁路的噪声预测有一定参考价值。  相似文献   

17.
为保证人的基本生活环境所要求的最低声学环境,应该规定一个环境噪声的最高允许值。超过这个允许值会对人的生活环境产生较大的干扰,易引起公众较多的抱怨。最高允许值也是为避免环境噪声对人的健康危害而定的一个安全界限。通过分析环境噪声对人的影响和国内外有关环境标准,提出以噪声级70dB(A)作为最高允许值。  相似文献   

18.
车轮降噪阻尼器在北京地铁车辆上的应用   总被引:1,自引:0,他引:1  
噪声防治是城市轨道交通面临的一大课题,而控制轮轨噪声则是从源头来治理轨道交通噪声。文章对北京地铁车辆的轮轨噪声进行了测试和分析,并率先在地铁13号线车辆上采用了车轮降噪阻尼器,通过对比实验表明它对消除中高频轮轨噪声具有明显的作用。  相似文献   

19.
铁路环境噪声的适用标准   总被引:2,自引:0,他引:2  
铁路环境噪声评价的适用标准是一有争议的问题。笔者根据GB3096-1993的条文表述、编制依据、编制说明、理论基础,分析了该标准对于铁路环境噪声影响评价的不适用性。认为环境影响评价的噪声适用标准应以排放标准为主,并提出修订城市区域环境噪声标准和铁路环境噪声标准时,应充分注意铁路的类型及其噪声的特点.提高标准的科学性和可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号