首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
高大  李云龙  王刚 《北方交通》2022,(2):77-79,84
盾构隧道下穿有轨电车路基时,会对周围土层造成扰动并造成路基沉降.路基沉降可能会给有轨电车运营安全带来较大影响.为研究盾构隧道下穿有轨电车路基过程中路基的沉降变化规律,以沈阳地铁4号线沈创区间为例,采用Midas-GTS-NX有限元软件对盾构隧道下穿有轨电车路基施工过程进行三维数值模拟,研究结果表明:本工程最大沉降量约为1.4mm,小于有轨电车路基沉降控制值10mm,无需采取其他处理措施即可满足变形控制要求;左右线盾构隧道同时开挖时,路基沉降量最大.在实际工程中,盾构隧道下穿重要构筑物时应尽量避免同时施工;左右线盾构隧道前后错开一定距离后施工可减少路基沉降,也可缩短工期.  相似文献   

2.
以杭州地铁 9 号线一期工程下穿沪杭铁路框架桥为背景, 建立盾构下穿施工三维数值模型, 分析软弱地层环境下地铁盾构隧道下穿施工对铁路框架桥的影响, 提出多种确保铁路安全运营应对措施, 并在施工过程中进行现场监测。 数值分析表明, 盾构隧道下穿施工中铁路框架桥最大沉降量为 6. 72mm, 进行洞内注浆加固后, 最大沉降量降为 4. 76mm, 说明在软弱地层环境下及时进行洞内注浆对抑制铁路框架桥的沉降变形具有显著效果; 监测结果表明, 盾构右线施工对框架桥沉降变形的影响大于左线, 铁路框架桥最大沉降达到 6. 9mm, 采取应对措施及时进行洞内二次注浆, 可有效控制框架桥的持续沉降变形, 铁路框架桥处于安全可控状态。  相似文献   

3.
为研究隧道近距离下穿施工对既有隧道沉降、衬砌应力和地表沉降扰动机理,以某下穿隧道工程为例,基于FLAC 3D有限差分软件建立隧道施工下穿既有隧道三维数值模型,分析隧道施工过程引起既有线沉降及衬砌应力变化规律。分析结果表明,隧道开挖过程中,地表最大沉降为3.8 mm,既有线隧道最大沉降为7.75 mm,位于靠近施工线路一侧拱腰处,且拱顶最大沉降为5.38 mm;未开挖前既有线衬砌最大应力7.798×105Pa,隧道贯通后,衬砌最大应力为1.124×106Pa,增幅达44%。研究结果为保证施工安全及优化施工控制措施具有重要作用。  相似文献   

4.
随着我国交通工程建设的不断发展,隧道下穿高速公路工程问题不断增多。以洺水隧道下穿邢汾高速公路工程为依托,首先采用数值计算方法对隧道开挖方法进行了优化,进而开展现场试掘进试验,对下穿过程中地表沉降变形规律进行了分析,最后通过隧道下穿过程中的监控量测,分析了变形控制技术的可行性。研究结果表明:CRD法和台阶法开挖均可保证隧道下穿施工过程中高速公路的沉降在控制标准内,洺水隧道下穿邢汾高速公路采用台阶法开挖。高速公路最大沉降为9.7 mm,保证了高速公路运营安全。  相似文献   

5.
董云生 《北方交通》2022,(3):8-11,15
以台州市和合大道工程下穿在建杭绍台铁路椒江特大桥为依托,运用有限元分析软件模拟了桩板结构的施工过程,得到了椒江特大桥在道路工程附加荷载作用下的墩顶位移及桩基承载力检算结果.结果表明:在和合大道桩板结构施工及运营阶段,高铁桥梁墩顶位移(沉降量、差异沉降量、顺桥向水平变形量和横桥向水平变形量)及其桩基承载力均能满足安全限值...  相似文献   

6.
以徐州市轨道交通2号线区间盾构下穿铁路为背景,研究下穿施工对铁路设施的影响。首先分析铁路箱涵和运营线路的控制标准,而后建立有限元模型进行模拟分析,并对现场监测数据分析。结果表明,地铁施工期间引起地表最大沉降量、列车振动荷载增加的地表沉降量均满足铁路最大沉降量控制标准;隧道开挖后,铁路箱涵各部分内力较小,结构本身安全可靠;现场监测数据表明,铁路箱涵和运营线路的最大沉降量及沉降差均满足控制标准,铁路正线可正常运行。  相似文献   

7.
为了控制盾构近接施工区既有建筑物的沉降变形,以福州地铁某线下穿文化街区的隧道盾构施工为例,采取全过程分阶段风险控制措施,并建立其隧道盾构的数值仿真模型,分析盾构施工对建筑物和地表沉降的影响。模拟结果表明:盾构下穿建筑物的最大沉降为4.9 mm,地表最大沉降为5.5 mm,均满足规范要求。同时将数值模拟结果和现场监测结果进行比对,验证了数值模拟的可靠性。研究结果可为类似隧道盾构下穿既有建筑物的风险管理和控制提供参考。  相似文献   

8.
盾构隧道下穿铁路股道及火车站站房的影响分析   总被引:1,自引:0,他引:1  
通过对南宁地铁1、2号线盾构隧道下穿铁路股道及火车站站房现场的调查、了解,依据各自的环境条件分别建立二维、三维数值模型,选取适当的单元类型进行模拟计算。发现采用洞内注浆加固配合地面加固的方式可使股道最大沉降减小18.9 mm,且使沉降槽缩小60 m。对火车站站房下的隧道采用洞内加固可保证影响区范围内的最大桩基沉降差约4.5 mm,远小于过规范规定的允许值。这就确保了盾构隧道下穿南宁火车站站房及铁路股道的安全,为今后类似工程的数值模拟分析提供经验。  相似文献   

9.
文章以南京河西新城现代有轨电车路桥过渡段地基处理工程为例,对路桥过渡段施工期的地基表面沉降和运营期的地基工后沉降进行现场监测,根据现场监测结果对水泥土搅拌桩复合地基在处理路桥过渡段软土地基中的加固效果进行分析。结果表明:施工期的表层沉降随时间增加逐渐增大,沉降速率在施工一个月后趋于稳定,累计沉降量为330 mm;运营期12个月内的工后累积沉降为9.2 mm,低于设计警戒值30 mm;采用水泥土搅拌桩进行地基处理后,有轨电车路桥过渡段的工后沉降得到了有效的控制。  相似文献   

10.
针对大连地铁109标段施工过程进行监控量测,分析施工过程中边坡稳定性问题.主要采用电子水准仪二等水准测量方法对边坡沉降进行观测,并采用全站仪对边坡水平位移进行施工过程中的监控量测,全面分析了施工过程中的沉降及水平位移数值变化规律.结果表明:明挖基坑坡顶监测点累计最大沉降值为9.2mm,最大水平位移为17.8 mm,均符合规范要求,施工过程中边坡基本稳定,能够保证安全施工,可为同类工程施工监测提供参考.  相似文献   

11.
粉质粘土层土体的含水量较高、渗透性较弱、粘性强,在盾构施工中土体扰动较大,地面沉降很难控制。鉴于此因,利用数值模拟的方法研究盾构施工时地表的沉降规律,通过计算分析,研究了地面的横向沉降、纵向沉降及水平位移的变形规律及特征。结果表明:隧道正上方的地面处的沉降量最大为15.98mm,地表横向沉降的影响范围主要在3倍的隧道直径范围内,其沉降量大概占最终值的90%;盾构通过后的地表沉降,地表沉降值由9.45mm增大到14.71mm,其沉降值约占地表沉降值的60%~90%;地面最大横向水平位移为5.8mm,发生在离隧道轴线垂直距离7~8m范围内。  相似文献   

12.
靖神铁路横山隧道为浅埋黄土隧道,在DK165+285~DK165+326下穿明长城遗址。为了保护明长城遗址,参考国内类似工程与文物部门要求,并结合设计,确定了下穿明长城段地表最大沉降不应超过30 mm、位移速率不应大于5 mm/d、局部倾斜应小于1‰的控制标准。采用flac~(3D)有限差分软件分析了不同(超前)支护措施对地表沉降的控制效果。结果表明:隧道采用洞身管棚、超前注浆小导管并加固掌子面时,下穿长城段地表沉降符合控制标准要求,且控制效果最好。实际施工中有效保证了隧道稳定和长城遗址的安全。  相似文献   

13.
以某地铁线机场延伸线盾构隧道下穿某机场停机坪为工程背景,通过二维数值模拟盾构施工过程,对地表沉降槽曲线特性进行了研究,同时计算了不同注浆压力值与地表最大沉降量的的关系。计算结果表明:单线开挖结束后,横断面的地表沉降近似呈现V型的正态分布曲线,盾构下穿对地表沉降的影响范围约为洞径的5倍,双线开挖结束后,地表沉降槽沿横断面方向近似呈现U型,注浆压力与地表沉降近似成反比关系。  相似文献   

14.
1项目简介 现代有轨电车具有节能、环保、投资少、建设周期短、景观效果好的优点,是城市轨道交通发展的新方向。沈阳浑南现代有轨电车网是我国目前一次性建设的规模最大的现代有轨电车路网。整个路网由4条线路组成,线路总长约60公里,其设车站67个。线路规划如图l所示。  相似文献   

15.
周山黄土隧道浅埋段下穿市政公路。由于隧道地层松散,埋深浅,断面开挖跨度大,隧道下穿施工极易引起道路路面沉降过大而影响路面正常行车。基于浅埋大断面黄土隧道常用施工方法的适应性分析,确定采用交叉中隔壁工法(CRD)进行下穿道路施工。隧道下穿道路施工的三维数值模拟结果及路面沉降监测结果表明,采用CRD施工是合适的,保证了隧道施工安全和道路的正常通行。  相似文献   

16.
路桥过渡段的修建是路桥施工中的重要环节,对控制整个工程质量的好坏起到非常重要的作用。针对有轨电车工程路桥过渡段软土地基,采用预应力管桩和水泥土搅拌桩2种方案进行处理,并开展了对有轨电车运营期的路基工后沉降的观测。现场观测结果表明:预应力管桩和水泥土搅拌桩处理软土地基后的工后累积沉降值分别为5.99 mm和8.79mm(设计允许工后沉降警戒值为30 mm),均满足过渡段沉降控制要求,2种方法对软土地基加固效果良好。  相似文献   

17.
针对西安地铁5号线近距离下穿地铁2号线的工程实际情况, 分析了既有地铁线路的安全判断准则、正常使用要求和服役状态, 选取弯矩、曲率半径、容许应力、容许切应变与轨道变形作为新建地铁隧道下穿时既有地铁线路沉降标准的控制因素, 构建了既有地铁线路的力学模型, 推导了既有地铁线路允许沉降计算公式, 确定了黄土地区新建地铁隧道下穿时既有地铁线路的沉降控制标准。分析结果表明: 以既有地铁线路的弯矩、曲率半径、容许应力、轨道变形与容许切应变依次作为控制因素时既有地铁线路允许沉降分别为22.40、20.85、48.14、20.23、21.06mm, 其他地区下穿工程经验允许沉降与国内相关规范允许沉降为20mm, 因此, 最不利控制因素即轨道变形的允许沉降接近既有相关允许沉降, 建议黄土地区新建地铁隧道下穿时既有地铁线路沉降控制基准为20mm; 对既有地铁线路沉降控制标准进行了分级管理, 选取沉降控制基准的100%、80%和60%分别作为既有地铁线路的控制值(20mm)、报警值(16mm) 与预警值(12mm), 提出了下穿时既有地铁线路的预警体系; 评价了新建地铁隧道下穿时既有地铁线路沉降的安全级别, 并给出了相应的处置措施, 安全级别为Ⅰ级, 即沉降不大于12mm时, 新建隧道正常施工并做好监测, 安全级别为Ⅱ级, 即沉降为(12, 16]mm时, 加强监测并实时反馈, 安全级别为Ⅲ级, 即沉降为(16, 20]mm时, 停止施工, 并启动应急预案, 安全级别为Ⅳ级, 即沉降大于20mm时, 达到破坏级别, 不允许施工。   相似文献   

18.
以某区间盾构隧道下穿高架桩基为工程背景,本项目条件复杂,施工变形控制严格,对此类复杂环境下地铁盾构隧道下穿高架桥桩基的托换施工技术进行分析,突破托换过程中结构止水性能、稳定性及刀盘刀具改造等技术难点,同时采用平面应变的计算模式对托换桩的施工过程进行模拟。结果表明:桥墩、托桩最大沉降量均在预警范围内。通过研究分析施工方案技术可行、水平较高,可为类似工程提供一定的工程借鉴和参考。  相似文献   

19.
地铁施工过程中盾构下穿上部已支护的基坑,将会对其支护结构及周边土体产生影响作用,因此有必要在盾构下穿前采用数值模拟的方法进行基坑稳定性分析。采用FLAC~(3D)软件模拟盾构下穿基坑后,青岛滨海软土区土体和地下连续墙的受力和变形情况,分析不同的下穿深度对基坑的底板沉降造成的影响。研究表明,盾构下穿基坑后底板附近的横向位移较大并成一定角度斜向上对称扩展至地表面,这些部位施工时应注意加固。在一定范围内,基坑底板的沉降量随着盾构形心与地表之间的竖向距离的增大而减小。本项研究成果可以为盾构下穿基坑时土体和支护结构的变形控制以及选择盾构下穿的深度提供一定依据。  相似文献   

20.
针对盾构施工对桥梁桩基影响特性,利用FLAC 3D有限元数值软件建立网格模型,分析了简支梁与连续梁桥两种结构形式下,不同穿越形式工况下桥桩位移变化特征。研究了盾构不同穿越简支梁桥桩时,桩身X、Y、Z向位移分布变化以及各穿越形式工况下的差异性特征,其中前排桥桩Z向沉降变形高于后排桥桩,下穿越形势下左侧桥桩沉降高于右侧,6#桥桩沉降稳定在0. 26mm。获得了盾构穿越连续梁桥时X向位移具有递增态势,远近测桥桩Y向位移变化斜率为一致,侧穿越桩基上部时每米桩长增长位移值约0. 15mm,4#桥桩为最大沉降变形,其中下穿越形式下最大,达8. 1mm。对比了两种梁桥结构下穿越形式时,简支梁桥位移值水平向位移或沉降变形均是最大,受盾构施工扰动影响较敏感。研究结论为研究盾构施工对桥梁桩基影响分析提供一定参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号