首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
黄土隧道洞口段支护结构的力学特性分析   总被引:4,自引:0,他引:4  
为了解浅埋偏压黄土隧道洞口段支护结构的受力状况,对刘家坪2^#隧道洞口段围岩压力、钢架应力、喷射混凝土应力、纵向连接筋应力、锚杆轴力及拱部下沉进行施工监测,并采用有限元法对隧道支护结构进行计算分析。结果表明:在浅埋偏压条件下,黄土隧道拱部发生了平面偏移,拱顶下沉量大于净空收敛量;围岩压力分布呈不对称猫耳状;钢拱架左侧轴力大于右侧轴力,总体受力很大,在支护体系中作用很明显;拱部和边墙喷射混凝土处于受压状态,而底部多为拉应力;拱部系统锚杆对结构的稳定性作用不大,而锁脚锚杆对结构的稳定性有一定的作用;纵向连接筋受力非常大,对隧道整体的稳定性很有利;应取消黄土隧道洞口段系统锚杆,采用由钢拱架、钢筋网、锁脚锚杆、喷射混凝土、纵向连接筋组合形成的初期支护结构。  相似文献   

2.
初期支护组合形式的有效性一直存在较多争议。依托蒙华铁路在建隧道,针对初期支护不同组合形式有效性问题开展大量现场试验,量测内容包括拱顶沉降、水平收敛、系统锚杆轴力、喷射混凝土应力及钢架应力。通过对花岗岩、板岩、砂泥岩、黄土4种地层进行试验,分析具有代表性的Ⅲ、Ⅳ、Ⅴ级花岗岩和Ⅴ级黄土试验段数据,研究深埋岩质和土质隧道初期支护中钢筋网喷射混凝土、钢架及系统锚杆不同组合形式的有效性。结果表明: 1)现阶段“网喷+钢架+系统锚杆”的初期支护组合形式未充分发挥其作用效果,有效性差,措施过于保守,存在很大优化空间; 2)在土质或浅埋破碎岩质隧道初期支护中,系统锚杆无明显作用,可以取消,而只采用“网喷+钢架”组合形式; 3)在深埋岩质隧道初期支护中,采用“网喷+钢架”或“网喷+系统锚杆”2类组合形式之一即可。考虑到目前现场系统锚杆施作机具和施工质量,采用“网喷+钢架”的组合形式是合理和可行的。  相似文献   

3.
通过对窑沟隧道周边收敛、拱顶下沉、围岩压力、钢拱架内力、喷射混凝土应力和锚杆轴力进行监控量测,了解隧道开挖过程中马兰黄土隧道围岩变形特性及支护结构受力特性。结果表明:施工过程中拱部沉降的量值远大于净空收敛的量值;围岩压力分布不均匀;钢架支护在隧道支护体系中起着非常重大的作用;拱部系统锚杆对结构的稳定性作用不大;水对拱顶沉降的影响非常严重。  相似文献   

4.
以某隧道V级围岩试验段为工程背景,采用现场测试和数值分析手段,对比支护形式进行基于黏弹塑性的三维变形、受力分析,获取了锚杆、喷射混凝土及钢支撑等初期支护结构的受力特征以及围岩变形规律.分析表明:在云母片岩地层隧道中,大变形主要表现为剪切破坏特征,3种支护形式对围岩的变形都有一定控制作用,但顶部系统锚杆对控制塑性区的影响作用甚微;锚杆及其他初期支护受力最大的区域均位于边墙下部和拱脚位置,提高喷层厚度和钢架刚度能减缓变形速率,但过大的刚度也使得结构内力大大增加.因此,为控制云母片岩隧道过度变形,应增强边墙与锁脚锚杆以提高初期支护成环效应,适当的提高钢架的刚度,必要时提前施作二次衬砌.  相似文献   

5.
为验证重载铁路黄土隧道初期支护推广应用格栅钢架的可靠性,通过全环格栅钢架混凝土1∶1模型试验,现场初期支护变形收敛、围岩压力、格栅钢架和喷射混凝土力学性能测试,以及基于大数据的初期支护变形收敛数据统计分析等方法进行研究。研究结果表明:1)全环格栅钢架混凝土结构表现出较高的承载能力兼顾较大的变形协调能力,H180型格栅钢架混凝土结构在极限状态下可承载相当于32.56 m的黄土自重; 2)格栅钢架可应用于Ⅳ、Ⅴ级围岩大跨度黄土隧道,能保证围岩稳定及初期支护结构的安全; 3)大跨度黄土隧道初期支护采用格栅钢架,初期支护拱顶下沉及水平收敛值控制良好,总体在开挖预留变形量控制值内。  相似文献   

6.
剧仲林 《隧道建设》2018,38(Z2):218-226
针对当前隧道初期支护设计存在不能承担全部设计荷载、以初期支护仰拱闭合的有利结构而不是以仰拱未闭合的最不利结构为最终设计目标而造成结构存在安全隐患以及给不出锚杆锚固力设计值和现场围岩变形很大使得采用岩体力学进行设计初期支护不具备条件的问题,提出按照“荷载-结构”的计算模型,采取结构力学力法对隧道初期支护承担全部设计荷载、对应施工“三台阶”法、对型钢钢架和喷射混凝土按变形协调条件确定各自承担荷载的比例系数、就钢架和喷射混凝土承载能力分别进行计算分析,明确在各部施工时对喷射混凝土强度以及锚杆的锚固力的要求。计算结果表明: 1)采取除中心夹角60°范围外其余均匀布置分布锚杆、采用“型钢钢架+分布锚杆+喷射混凝土”支护型式的隧道初期支护完全具有承担全部设计荷载的能力,且仰拱开挖不会威胁支护的稳定; 2)应将锚杆作为支护结构的链杆支座来确定锚杆锚固力; 3)锚杆和喷射混凝土3 h的强度对支护结构的承载能力影响很大。  相似文献   

7.
鉴于土质隧道施工方法、支护时机、施工工艺等对系统锚杆支护效果的影响,及高含水量土层中锚杆成孔困难、注浆效果差、抗拉拔力低等缺点,提出在高含水量土质隧道中不设系统锚杆,初期支护采用“型钢拱架+喷射混凝土+钢筋网+锁脚锚管+纵向连接筋”组成的新型支护结构。为了评价这种新型支护结构的受力、变形特性以及衬砌结构的可靠性,在天恒山隧道Ⅵ级围岩段设置了两个监测断面,对隧道初期支护的拱部下沉、净空收敛、围岩压力、喷射混凝土应力、型钢拱架应力、纵向连接筋应力等进行监控量测。监测结果表明,不设系统锚杆时,隧道支护结构的变形和受力均在允许范围之内,初期支护工作状态良好。不设系统锚杆,可缩短工期和降低工程造价,具有着显著的经济价值和社会效益。  相似文献   

8.
为更加直观地证明隧道初期支护具有单独承载能力的事实,提出直接弹性抗力法原理。直接弹性抗力法以拱(圆曲梁)和弹性地基拱(弹性地基圆曲梁)2段函数分别反映拱部支护结构脱离围岩以及侧壁支护结构压向围岩2段结构的内力及位移,能极大地简化计算过程,较为真实地反映隧道支护结构的应力状态;并结合链杆支座拱、铰支座拱模型,分别模拟实际施工的无分布锚杆影响、有分布锚杆影响但锚杆无切向力、有分布锚杆影响且锚杆有切向力3种支护应力状态,比较全面地概括隧道支护施工可能产生的应力状态,充分证明隧道初期支护具有单独承载能力的理论事实。强调"先柔后刚,先放后抗"属于概念,初期支护变形的主要原因是地基承载力不足造成沉降,锚杆锚固力和喷射混凝土早期强度等严重影响初期支护单独承载;再根据隧道支护结构各种可能的应力状态,提出对隧道初期支护结构细节设计的改进建议,如锚杆与钢架的连接、钢架之间的连接、钢架底脚的处理、锁脚管桩、型钢钢架与格栅钢架的组合结构等,通过实践证明隧道初期支护具有单独承载能力的理论。  相似文献   

9.
刘洋  谭忠盛 《隧道建设》2015,35(6):514-520
为了更好地研究系统锚杆在浅埋大跨小净距黄土隧道中的支护效果,以武西高速公路桃花峪隧道施工为依托,进行有无锚杆现场对比试验,结果表明:从初期支护左右侧拱顶沉降的对比来看,有锚杆段沉降略小于无锚杆段,水平收敛相差不大,锚杆对改善隧道围岩和初期支护受力作用相对较小,有锚杆试验段围岩-初期支护接触压力量值相对较小,相比于无锚杆段的土体压力略微均匀。综上所述,建议取消锚杆,对于薄弱环节可保留先行洞边墙小净距侧的锚杆施作。  相似文献   

10.
采用FLAC3D建立软弱围岩隧道模型,通过对比多种工况下的隧道支护效果,提出由超前支护和"钢架+钢筋网+两翼锚杆+喷射混凝土+锁脚锚杆+纵向连接筋"组成的初期支护形成联合支护结构。取消拱部范围系统锚杆,不仅未影响隧道围岩稳定,而且可以缩短了工序循环时间,有利于及早封闭围岩以形成完整的支护结构,具有一定的经济效益和社会效益。  相似文献   

11.
考虑索承桥梁中格构式梁体具有多种截面形式复合的特点,其抗风性能难以通过常用的二维数值仿真来分析,以东部沿海一座格构式拱桥为研究背景,考虑格构式系梁的结构特点和栏杆等附属设施的影响,建立三维数值仿真模型,对格构式系梁的静力三分力系数进行精细化分析。基于不同计算区域的模拟精度需求,采用不同方法进行混合网格划分;针对复杂格构式系梁的流场特征,优化选取流场尺度规模、边界条件和湍流模型等计算参数分析获得大范围风攻角下的三分力系数;将所得结果与风洞试验结果进行对比分析,并探讨栏杆等附属设施对三分力系数的影响以及数值模拟误差与风涡特性的相关性。结果表明:在小风攻角范围(±4°)内,有栏杆的三维数值模拟具有较高的精度;栏杆等附属设施对格构式梁体的抗风性能有一定影响,考虑栏杆等附属设施的精细化数值模拟比不考虑栏杆的计算误差平均降低20%,且增加了梁体所受的静风荷载,在实际工程中应当对栏杆等附属设施予以重视;不同风攻角下的风涡特性与数值仿真的误差存在相关性,随着风攻角的增大梁侧的风涡效应明显,这使得三维数值仿真的误差开始增大,尤其是在正大风攻角的情况下模拟精度下降严重。  相似文献   

12.
跨江隧道结构沉管施工需对河床基槽进行浚挖,基槽拓宽挖深导致现有护岸结构安全性不足,需重新加固改造护岸结构。格构式地连墙由于稳定性良好,不需内部支撑体系,且变形可控,适用于沉管隧道护岸工程中,并可以作为永久护岸结构。以广州南沙明珠湾区跨江通道护岸工程为实例,介绍了格构式地连墙在其中的应用,采用数值模拟计算其变形量,探讨其适用性和安全性。  相似文献   

13.
作为比亚迪丰田电动车科技有限公司第1款纯电动轿车,bZ3的能耗要求极高,也给空气动力学性能开发带来了很大的挑战。为实现这一目标,通过采用计算流体力学(Computational Fluid Dynamics,CFD)仿真和风洞试验相结合的方法,对车身造型、车底、前舱进气管理、车轮、密封等部位进行了持续的优化验证。最终bZ3在风洞中进行实车试验验收,空气阻力系数达到0.218,在同级别车型中处于领先水平。通过两种不同仿真方法对比研究发现格子玻尔兹曼(Lattice Boltzmann Method,LBM)方法整体精度较高,但对于底部气流的模拟精度还有待提升。  相似文献   

14.
封闭式扁平钢箱梁颤振稳定性气动优化措施风洞试验研究   总被引:2,自引:0,他引:2  
以某大跨度悬索桥封闭式扁平钢箱梁为例,利用节段模型风洞试验,研究风嘴、导流板、栏杆、导轨对颤振临界风速的影响。试验结果表明,导流板、风嘴和栏杆透风率对颤振临界风速影响显著,栏杆位置和导轨位置对颤振临界风速影响不大,最终确定了一种气动外形较优方案,为类似钢箱梁抗风设计提供了借鉴经验。  相似文献   

15.
徐洪涛  张立辉  苑敏 《公路》2012,(1):68-74
在介绍识别气动导纳函数的试验原理和试验方法的基础上,以坝陵河大桥和果子沟大桥为例进行了桁梁桥气动导纳函数的试验研究.对不同攻角、不同风速下的升力导纳、阻力导纳和升力矩导纳进行对比分析,概括了桁梁桥气动导纳函数的特点,并利用数值拟合技术,得到桁架结构断面气动导纳函数的经验拟合公式.基于该公式,对坝陵河大桥和果子沟大桥进行了抖振频域分析,并与风洞试验抖振响应测量结果做对比,表明计算值与试验值具有良好的一致性,证明了桁梁气动导纳识别方法的正确性和拟合公式的有效性.  相似文献   

16.
基于典型桁架桥梁断面桁片节点测压风洞试验,研究了典型桁架桥梁断面-10°~ +10°风攻角下的遮挡系数.试验结果表明:采用规范计算桁架桥梁断面成桥状态的遮挡系数,在计算间距比和实面积比时,建议将桥面铺装高度计入迎风桁架高度,将桥面铺装迎风面积计入桁架轮廓面积;遮挡系数随着风攻角的增大而减小,可以采用一次线性经验公式计算不同攻角的遮挡系数.  相似文献   

17.
大跨连续组合箱梁桥的概念设计   总被引:3,自引:1,他引:2  
邵长宇 《桥梁建设》2008,(1):41-43,61
简要说明大跨连续组合箱梁桥概念设计的意义,明确概念设计阶段应该考虑的主要技术问题.从总体布置、负弯矩区设计方法、结构关键构造、施工方法及其与设计的结合等方面,对该桥型概念设计所应把握的规律与要点进行分析论述.对负弯矩区桥面板设计原则、钢梁局部屈曲理论与构造的发展、设计与施工的相互依存性等关键问题的技术动态进行阐述,并指出其对大跨连续组合箱梁桥的技术与经济竞争力十分重要.  相似文献   

18.
不同尺度扁平箱梁节段模型涡激振动风洞试验   总被引:4,自引:2,他引:2  
大跨度桥梁涡激振动振幅的判定,采用大尺度主梁节段模型风洞试验可得到更精细的结果。为分析模型尺度对试验结果的影响,通过对南京长江四桥主梁1∶50和1∶20两种几何尺度扁平箱梁节段模型的涡振试验,对比两者在涡振振幅、涡振风速、涡振区、St等方面的差异,并结合雷诺数效应、阻尼比、模型细部模拟等影响因素进行分析。得知模型几何尺度越大,Re和St越大,CD越小,涡振振幅越小;常规尺度模型细部模拟的误差可能会显著影响涡振振幅;Sc增大时,锁定状态下结构振幅减小,涡振区也随之变窄,但Sc增大并不改变St数。  相似文献   

19.
重庆石板坡长江大桥复线桥主跨(330 m)的103 m钢箱梁段为整体吊装合龙,在温度变化下的大尺寸合龙是技术难度较高的工作。介绍在桥梁设计中对合龙的考虑和实施结果。  相似文献   

20.
宋远  黄明利  李兆平 《隧道建设》2020,40(Z2):161-173
针对传统格栅钢架和自主设计的4肢钢管钢架支护结构,利用Abaqus通用有限元软件,综合考虑钢管厚度、构件质量、材料成本等因素,系统开展2种隧道支护结构在单独受荷和共同受荷条件下的极限承载力、抗弯刚度、弯曲挠度、破坏形态等力学特性及演化规律的对比试验研究。研究结果表明: 1)钢管钢架和格栅钢架在刚度、承载力、变形破坏形态等方面存在一定差异,在用钢量相同的情况下,钢管钢架具有更高的强度和抗弯刚度,结构变形和受力亦更加合理; 2)钢管钢架自身承载力受钢管壁厚参数影响较为显著,壁厚取值过小会明显降低其承载力,但当壁厚达到一定数值时,继续增加壁厚对提高构件整体强度和抗弯刚度有限,同时会相应增加构件质量和材料成本; 3)在单独受荷条件下,格栅钢架的承载力为445 kN·m,较钢管钢架构件PG-2低393%,此时钢管钢架质量较格栅钢架略低,但每延米单价要高; 4)格栅钢架混凝土构件的极限荷载为174.6 kN·m,较钢管钢架混凝土构件C+PG-2、C+PG-6的极限荷载分别低2.7 %、30.6 %; 5)钢管钢架对于早期变形速度较大的围岩具有较好的适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号