首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
SUMMARY

Automotive steering behaviour is classified for steady-state cornering and the definitions of over-/understeer and stability/instability are well known. In this paper it is intended to apply these definitions to combined cornering and braking maneuvers i.e. to extend the criteria to quasi-steady-state conditions. This way of investigation was chosen because it gives a clear idea of the typical handling behaviour. Furthermore, the vehicle behaviour is analyzed using the cornering stiffness of the axles and front/rear cornering stiffness ratio because this is always of primary significance. The following contribution is based on a theoretical analysis considering the most important non-linear vehicle properties.

The paper deals with two groups of vehicles: single vehicles (passenger cars) and combinations (passenger car/caravan and tractor/semitrailer). In the case of combinations the effect of trailers on the towing vehicles is examined. So, careful attention is paid to the coupling forces, which alter the wheel loads and influence steerability and stability.  相似文献   

3.
ABSTRACT

It is well known that the tyre steering torque is highly dependent on the tyre rolling speed. In limited cases, i.e. parking manoeuvre, the steering torque approaches the maximum. With the increasing tyre speed, the steering torque decreased rapidly. Accurate modelling of the speed-dependent behaviour for the tyre steering torque is a key factor to calibrate the electric power steering (EPS) system and tune the handling performance of vehicles. However, no satisfactory theoretical model can be found in the existing literature to explain this phenomenon. This paper proposes a new theoretical framework to model this important tyre behaviour, which includes three key factors: (1) tyre three-dimensional transient rolling kinematics with turn-slip; (2) dynamical force and moment generation; and (3) the mixed Lagrange–Euler method for contact deformation solving. A nonlinear finite-element code has been developed to implement the proposed approach. It can be found that the main mechanism for the speed-dependent steering torque is due to turn-slip-related kinematics. This paper provides a theory to explain the complex mechanism of the tyre steering torque generation, which helps to understand the speed-dependent tyre steering torque, tyre road feeling and EPS calibration.  相似文献   

4.
5.
SUMMARY

A vehicle model, with 10 degrees of freedom is used to investigate the skidding conditions of any wheel of the vehicle in motion. Equations for the load transfer and equations for the pneumatic tire spring and shock absorber are derived. Parameters such as gradual cornering, U-curve cornering, the wavy road surface of different wave lengths and cases of independent and connected suspension systems are inputs to the system. The tire calculated forces and their corresponding maximum resistance forces are the outputs of the systems. A connected suspension system is found to resist skidding better than the independent suspension system. The system is non-linear, and numerical solutions are obtained.  相似文献   

6.
SUMMARY

Passenger discomfort, suspension working space and dynamic tyre loading parameters are calculated for different combinations of spring stiffness and damping coefficient representing the suspension system in a quarter car model subject to realistic random disturbance inputs from roads of widely differing quality. Sprung and unsprung masses and the tyre vertical stiffness and damping coefficient employed derive from a current production car. Designs which are best for the specific conditions represented are identified and their performance properties in other (off-design) conditions are considered, and conventional design is explained as the inevitable consequence of the need to compromise if fixed suspension parameters are used. Performance improvements possible if variable parameters can be employed are evaluated as a function of the ranges of variability provided, and a stratagem for controlling parameters is proposed.  相似文献   

7.
ABSTRACT

During straight-ahead running, the longitudinal axis of road vehicles, notably cars, is not parallel to road axis. This occurrence is general and is due both to road cross slope (road banking) and to tyre characteristics, particularly ply-steer and conicity. In order to describe such a phenomenon, the paper develops a new and relatively simple analytical model. Despite the model is linear, the solution which is provided is exact, since straight-ahead motion occurs with small angles and both the elastokinematics of suspension system and tyre characteristics can be modelled by linearised equations. The Handling Diagram theory is updated and completed by introducing the actual shifts of tyre characteristics. The validation of the analytical expressions is performed by using a MSC AdamsTM full model of a car. A subjective-objective experimental test campaign provides preliminary substantiation of the ability of the derived formulae to describe tyre performance. By means of the unreferenced analytical formulae developed in the paper, we allow, given the vehicle, the proper tyre design specification and vice-versa. In particular, a formula is given to make null the steering torque during straight-ahead driving. The derived analytical formulae may provide a sound understanding of the straight-ahead running of road vehicles.  相似文献   

8.
ABSTRACT

A state-of-the-art discussion on the applications of magneto-rheological (MR) suspensions for improving ride comfort, handling, and stability in ground vehicles is discussed for both road and rail applications. A historical perspective on the discovery and engineering development of MR fluids is presented, followed by some of the common methods for modelling their non-Newtonian behaviour. The common modes of the MR fluids are discussed, along with the application of the fluid in valve mode for ground vehicles’ dampers (or shock absorbers). The applications span across nearly all road vehicles, including automobiles, trains, semi-trucks, motorcycles, and even bicycles. For each type of vehicle, the results of some of the past studies is presented briefly, with reference to the originating study. It is discussed that Past experimental and modelling studies have indicated that MR suspensions provide clear advantages for ground vehicles that far surpasses the performance of passive suspension. For rail vehicles, the primary advantage is in terms of increasing the speed at which the onset of hunting occurs, whereas for road vehicles – mainly automobiles – the performance improvements are in terms of a better balance between vehicle ride, handling, and stability. To further elaborate on this point, a single-suspension model is used to develop an index-based approach for studying the compromise that is offered by vehicle suspensions, using the H2 optimisation approach. Evaluating three indices based on the sprung-mass acceleration, suspension rattlespace, and tyre deflection, it is clearly demonstrated that MR suspensions significantly improve road vehicle’s ride comfort, stability, and handling in comparison with passive suspensions. For rail vehicles, the simulation results indicate that using MR suspensions with an on-off switching control can increase the speed at which the on-set of hunting occurs by as much as 50% to more than 300%.  相似文献   

9.
The linear quarter car model is the most widely used suspension system model. A number of authors expressed doubts about the accuracy of the linear quarter car model in predicting the movement of a complex nonlinear suspension system. In this investigation, a quarter car rig, designed to mimic the popular MacPherson strut suspension system, is subject to narrowband excitation at a range of frequencies using a motor driven cam. Linear and nonlinear quarter car simulations of the rig are developed. Both isolated and operational testing techniques are used to characterise the individual suspension system components. Simulations carried out using the linear and nonlinear models are compared to measured data from the suspension test rig at selected excitation frequencies. Results show that the linear quarter car model provides a reasonable approximation of unsprung mass acceleration but significantly overpredicts sprung mass acceleration magnitude. The nonlinear simulation, featuring a trilinear shock absorber model and nonlinear tyre, produces results which are significantly more accurate than linear simulation results. The effect of tyre damping on the nonlinear model is also investigated for narrowband excitation. It is found to reduce the magnitude of unsprung mass acceleration peaks and contribute to an overall improvement in simulation accuracy.  相似文献   

10.
SUMMARY

Tests were performed on a typical UK articulated vehicle to measure dynamic tyre forces and sprung mass accelerations. The measured road profile data and vehicle response data are used to determine some of the important characteristics of articulated vehicle vibration behaviour. In particular, roll motions and their effect on dynamic tyre forces are examined. The measured data are used to validate two and three-dimensional computer models of the vehicle. Attention is given to modelling the tandem leaf-spring trailer suspension. The conditions under which a two-dimensional model can accurately simulate vehicle behaviour are examined.  相似文献   

11.
Recent data show that 35% of fatal crashes in sport utility vehicles included vehicle rollover. At the same time, experimental testing to improve safety is expensive and dangerous. Therefore, multi-body simulation is used in this research to improve the understanding of rollover dynamics. The majority of previous work uses low-fidelity models. Here, a complex and highly nonlinear multi-body model with 165 degrees of freedom is correlated to vehicle kinematic and compliance (K&C) measurements. The Magic Formula tyre model is employed. Design of experiment methodology is used to identify tyre properties affecting vehicle rollover. A novel, statistical approach is used to link suspension K&C characteristics with rollover propensity. Research so far reveals that the tyre properties that have the greatest influence on vehicle rollover are friction coefficient, friction variation with load, camber stiffness and tyre vertical stiffness. Key K&C characteristics affecting rollover propensity are front and rear suspension rate, front roll stiffness, front camber gain, front and rear camber compliance and rear jacking force.  相似文献   

12.
SUMMARY

This article deals with the simulation of a vehicle/pilot system experiencing external disturbances. In the simulation, the car is modeled with two degrees of freedom and the pilot is assumed to respond to the state vector with a time delay. When perturbations are introduced, the pilot is expected to drive his car back to the initial state while minimizing a quadratic cost function. With some simplifications for low frequencies responses, the model is then used to simulate the response of different vehicles to an initial step in lateral displacement. The results from the simulations are interpreted in the light of the controllability diagrams.  相似文献   

13.
The sleeper-passing impact has always been considered negligible in normal conditions, while the experimental data obtained from a High-speed train in a cold weather expressed significant sleeper-passing impacts on the axle box, bogie frame and car body. Therefore, in this study, a vertical coupled vehicle/track dynamic model was developed to investigate the sleeper-passing impacts and its effects on the dynamic performance of the high-speed train. In the model, the dynamic model of vehicle is established with 10 degrees of freedom. The track model is formulated with two rails supported on the discrete supports through the finite element method. The contact forces between the wheel and rail are estimated using the non-linear Hertz contact theory. The parametric studies are conducted to analyse effects of both the vehicle speeds and the discrete support stiffness on the sleeper-passing impacts. The results show that the sleeper-passing impacts become extremely significant with the increased support stiffness of track, especially when the frequencies of sleeper-passing impacts approach to the resonance frequencies of wheel/track system. The damping of primary suspension can effectively lower the magnitude of impacts in the resonance speed ranges, but has little effect on other speed ranges. Finally, a more comprehensively coupled vehicle/track dynamic model integrating with a flexible wheel set is developed to discuss the sleeper-passing-induced flexible vibration of wheel set.  相似文献   

14.
Pacejka's Magic Formula Tyre Model is widely used to represent force and moment characteristics in vehicle simulation studies meant to improve handling behaviour during steady-state cornering. The experimental technique required to determine this tyre model parameters is fairly involved and highly sophisticated. Also, total test facilities are not available in most countries. As force and moment characteristics are affected by tyre design attributes and tread patterns, manufacturing of separate tyres for each design alternative affects tyre development cycle time and economics significantly. The objective of this work is to identify the interactions among various tyre design attributes-cum-operating conditions and the Magic Formula coefficients. This objective is achieved by eliminating actual prototyping of tyres for various design alternatives as well as total experimentation on each tyre through simulation using finite element analysis. Mixed Lagrangian–Eulerian finite element technique, a specialized technique in ABAQUS, is used to simulate the steady-state cornering behaviour; it is also efficient and cost-effective. Predicted force and moment characteristics are represented as Magic Formula Tyre Model parameters through non-linear least-squares fit using MATLAB. Issues involved in the Magic Formula Tyre Model representation are also discussed. A detailed analysis is made to understand the influence of various design attributes and operating conditions on the Magic Formula parameters. Tread pattern, tread material properties, belt angle, inflation pressure, frictional behaviour at the tyre–road contact interface and their interactions are found to significantly influence vehicle-handling characteristics.  相似文献   

15.
The paper deals with the bifurcation analysis of a rather simple model describing an automobile negotiating a curve. The mechanical model has two degrees of freedom and the related equations of motion contain the nonlinear tyre characteristics. Bifurcation analysis is adopted as the proper procedure for analysing steady-state cornering. Two independent parameters referring to running conditions, namely steering angle and speed, are varied. Ten different combinations of front and rear tyre characteristics (featuring understeer or oversteer automobiles) are considered for the bifurcation analysis. Many different dynamical behaviours of the model are obtained by slightly varying the parameters describing the tyre characteristics. Both simple and extremely complex bifurcations may occur. Homoclinic bifurcations, stable and unstable limit cycles (of considerable amplitude) are found, giving a sound and ultimate interpretation to some actual (rare but very dangerous) dynamic behaviours of automobiles, as reported by professional drivers. The presented results are cross-validated by exploiting handling diagram theory. The knowledge of the derived set of bifurcations is dramatically important to fully understand the actual vehicle yaw motions occurring while running on an even surface. Such a knowledge is a pre-requisite for robustly designing the chassis and for enhancing the active safety of vehicles.  相似文献   

16.
Applying a non-linear model reduction method to the tire suspension system of road vehicles enables an automatic transfer of complex offline simulation vehicle models to a mathematical model, which fits the real time simulation requirements. The basic assumption, that high frequent inner suspension dynamics are not relevant to handling manoeuvres, converts the differential algebraic equation system (DAE) of suspensions with kinematical closed loops into pure elasto-kinematical linkage equations. The equations of motions can be represented as an ordinary differential equation system (ODE) and considerable simulation time reductions are obtained for the off-line simulation and real time simulation is enabled. This so-called macro joint approach is an alternative modelling method to the well-known look-up table representation of suspension kinematics but it keeps the parameterisation of the original suspension model and is suitable to parameterised real time MBS models. With a second step the dynamics, caused by compliance in the suspension bushings, are reduced to their quasi-static behaviour. The consideration of these quasi-elasticity has nearly no influence on the necessary simulation time. This contribution shows the theoretical background and demonstrates the advantage of the macro joint model reduction approach on a typical vehicle example.  相似文献   

17.
Applying a non-linear model reduction method to the tire suspension system of road vehicles enables an automatic transfer of complex offline simulation vehicle models to a mathematical model, which fits the real time simulation requirements. The basic assumption, that high frequent inner suspension dynamics are not relevant to handling manoeuvres, converts the differential algebraic equation system (DAE) of suspensions with kinematical closed loops into pure elasto-kinematical linkage equations. The equations of motions can be represented as an ordinary differential equation system (ODE) and considerable simulation time reductions are obtained for the off-line simulation and real time simulation is enabled. This so-called macro joint approach is an alternative modelling method to the well-known look-up table representation of suspension kinematics but it keeps the parameterisation of the original suspension model and is suitable to parameterised real time MBS models. With a second step the dynamics, caused by compliance in the suspension bushings, are reduced to their quasi-static behaviour. The consideration of these quasi-elasticity has nearly no influence on the necessary simulation time. This contribution shows the theoretical background and demonstrates the advantage of the macro joint model reduction approach on a typical vehicle example.  相似文献   

18.
This paper presents a method to optimise a car chassis fitted either with passive or active suspensions. Provided that a full vehicle model is available for accurate simulations of many different driving situations (J-turn, lane-change, power-on/power-off on even/rough, dry/wet roads), the method allows to tune the parameters of the chassis system (suspension elastokinematics, stiffnesses, dampings, actuator gains, tyre pressures...) in order to achieve the desired dynamic behaviour of the car in all of the considered driving situations. According with the Global Approximation approach, the original physical car model is substituted by another purely numerical mathematical model (backpropagating Artificial Neural Network). This reduces the simulation time dramatically and enables the optimisation process to come to successful results. The computation of the Pareto-optimal set is performed by using Genetic Algorithms. The method is validated by optimising the parameters of the suspension system of an actual car.  相似文献   

19.
This paper presents a method to optimise a car chassis fitted either with passive or active suspensions. Provided that a full vehicle model is available for accurate simulations of many different driving situations (J-turn, lane-change, power-on/power-off on even/rough, dry/wet roads), the method allows to tune the parameters of the chassis system (suspension elastokinematics, stiffnesses, dampings, actuator gains, tyre pressures...) in order to achieve the desired dynamic behaviour of the car in all of the considered driving situations. According with the Global Approximation approach, the original physical car model is substituted by another purely numerical mathematical model (backpropagating Artificial Neural Network). This reduces the simulation time dramatically and enables the optimisation process to come to successful results. The computation of the Pareto-optimal set is performed by using Genetic Algorithms. The method is validated by optimising the parameters of the suspension system of an actual car.  相似文献   

20.
This paper presents a 94 degrees of freedom non-linear multi-body dynamics model of a vehicle comprising front and rear suspensions, steering system, road wheels, tyres and vehicle inertia. The model incorporates all sources of compliance: stiffness and damping, all with non-linear characteristics. The model is used for the purpose of vehicle handling analysis. A simulation run, pertaining to a double lane change is undertaken in-line with the ISO 3888 standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号