首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
利用电子低压冲击器,研究了配装DPF的轻型柴油车使用不同燃油时,DPF前后颗粒物排放状况以及颗粒物数量浓度和质量浓度在粒径上的分布.结果显示,车辆使用硫质量分数高的燃油时排放的颗粒物的数量和质量都比车辆使用硫质量分数低的燃油时大,但经DPF过滤后,不论使用何种燃油,颗粒物的数量和质量都会大幅减少,尤其以粒径在0.04μm以上的颗粒物更为明显,车辆使用硫质量分数低的燃油时DPF的过滤效率比车辆使用硫质量分数高的燃油时高.  相似文献   

2.
对燃用硫含量分别为300mg/kg与43mg/kg的柴油和是否安装DPF对采用典型国Ⅳ排放控制技术的柴油轿车颗粒物排放特性的影响进行了试验研究.结果表明,未装DPF时,国Ⅳ柴油车燃用高含硫量燃油时的颗粒物质量排放较燃用低含硫量燃油时增加25.3%;安装DPF时增加22.2%.而颗粒物数量排放结果说明,燃油含硫量对安装DPF车辆的颗粒物数量浓度影响较大,燃用高含硫量燃油时的循环平均颗粒物数量浓度约为燃用低含硫量燃油时的4.8倍.研究同时表明,颗粒物排放主要在加速阶段产生,稳态工况和减速下颗粒物数量排放大幅降低.  相似文献   

3.
陈熊  李孟良  侯献军  徐月云 《汽车工程》2013,(12):1074-1077
通过对比某轻型柴油车DPF前、后端颗粒物在NEDC测试循环的不同工况段上的数量浓度和质量浓度随粒径分布的差异,分析了DPF对不同粒径颗粒物在不同工况下的过滤效果。结果表明,在市郊高速急减速工况下,DPF对各粒径颗粒物(特别是粒径小于1μm的细颗粒)过滤效果较低,是该车辆运行NEDC循环时DPF综合过滤效率低下(只有52%)的原因。  相似文献   

4.
研究发现,安装DPF后将增加车辆发动机排放的微粒物数量和质量,但经过DPF过滤后,微粒物质量和数量都会大幅减少,过滤效果良好。  相似文献   

5.
基于加载减速工况,利用ELPI能够有效研究颗粒物排放状况以及其数目浓度和质量浓度在粒径上的分布,研究证实,这种测试技术具有很高的DPF性能鉴别能力。通过量化分析颗粒物在DPF前后粒径上的浓度分布以及图解DPF前后的浓度差值,可以非常清晰地发现该DPF对于不同粒径的过滤性能,为开发和匹配柴油车颗粒物过滤器提供一种有效的手段。  相似文献   

6.
以某型高压共轨柴油机为研究对象,研究试验样机加装DOC+DPF后处理装置对其颗粒排放特性的影响。结果表明:试验样机连接DOC+DPF后,颗粒物排放显著降低,在中高转速下,转化率平均在97%以上;在中低转速DOC+DPF对积聚态颗粒净化效率高于核模态颗粒,在1030rpm下,颗粒物总数量下降89%,总质量下降33%;在1200rpm下,颗粒物总数量下降96%,总质量下降77%。在1030rpm和1600rpm除了70%负荷外,DOC+DPF前的NO2/NOX比值都高于DOC+DPF后的,DOC+DPF后的NO2/NOX比值随负荷增加先减小后增加。  相似文献   

7.
研究了柴油车用颗粒物捕集器(DPF)采用不同累炭方式进行加载时,累炭速率、积炭分布和颗粒物排放随工况和炭载量的变化规律。试验结果表明:对于累炭速率曲线较为平缓的工况,更适合通过控制时间长度来制备不同累炭比例的DPF,对于累炭速率不稳定的工况,不适宜制备低比例累炭量的DPF; DPF内部颗粒物的分布与工况呈现很强的相关性,相似的稳态工况下,无论是用发动机台架试验还是整车试验,DPF内部颗粒物分布规律相似;稳态和瞬态累炭工况下,颗粒物数量和质量排放均随着炭载量的增加出现先高后低的变化规律。  相似文献   

8.
利用颗粒物数量测试仪器ELPI对瞬态循环下的汽油车和液化石油气汽车进行颗粒物排放测量.结果表明,两种车辆排放的颗粒物中,粒径小于70nm的颗粒物均占绝对优势,占总排放的80%~ 90%;大于490nm的颗粒物在总排放中的比例均非常小.且颗粒物数量排放浓度随着车速的升高而增加,尤其是车速超过70km/h后,颗粒物数量排放随车速的增幅升高.但两种车辆相对比较,汽油车排放的颗粒物数量比液化石油气汽车多.  相似文献   

9.
正1长城哈弗柴油车颗粒捕集器再生颗粒捕集器(Diesel Particulate Filter)简称DPF,它是一种安装在柴油发动机排气系统中的过滤器,可以在排气中的微小颗粒物进入大气之前将其捕捉,然后再对捕集的微小颗粒物进行氧化,减少有害物质排放。如图1所示,DPF安装在排气支管与消声器之间的排气管路上,在DPF的前端和后端安装有排气压差传感器检测  相似文献   

10.
基于发动机试验台架,对柴油中添加微量的铁基燃油添加剂进行了试验,从颗粒物数量浓度和粒径的分布特性、排气烟度、颗粒物的氧化特性等方面研究了燃油添加剂对柴油机颗粒物排放的影响。研究结果表明:燃油添加剂能降低柴油机排气温度和排气烟度。加入添加剂后,核模态颗粒数量浓度增加,峰值粒径也增加;积聚态颗粒数量浓度无明显变化;颗粒物总数量浓度增加,但添加剂浓度对颗粒数量浓度影响较小。添加剂使颗粒物中SOF含量增加,同时也使得微粒的氧化表观活化能和起燃温度都降低。  相似文献   

11.
In recent years, particle number emissions rather than particulate mass emissions in automotive engines have become the subject with controversial discussions. Recent results from studies of health effects imply that it is possible that particulate mass does not properly correlate with the variety of health effects attributed to engine exhaust. The concern is now focusing on nano-sized particles emitted from I. C. engines. In this study, particulate mass and particle number concentration emitted from light-duty vehicles were investigated for a better understanding of the characteristics of the engine PM from different types of fuels, such as gasoline and diesel fuel. Engine nano-particle mass and size distributions of four test vehicles were measured by a condensation particle counter system, which is recommended by the particle measurement program in Europe (PMP), at the end of a dilution tunnel along a NEDC test mode on a chassis dynamometer. We found that particle number concentrations of diesel passenger vehicles with DPF system are lower than gasoline passenger vehicles, but PM mass has some similar values. However, in diesel vehicles with DPF system, PM mass and particle number concentrations were greatly influenced by PM regeneration. Particle emissions in light-duty vehicles emitted about 90% at the ECE15 cycle in NEDC test mode, regardless of vehicle fuel type. Particle emissions at the early cold condition of engine were highly emitted in the test mode.  相似文献   

12.
By high particulate matter(PM) reduction performance, diesel particulate filter(DPF) is applied to almost all of modern HSDI diesel engine. PM emitted from diesel engine is consist of carbon based and non-carbon based material. Representative carbon based PM is soot. Non-carbon based PM is produced by wear of engine and exhaust component, combustion of lubrication oil and sulphur in fuel. Accumulation of non-carbon based PM affects pressure difference of DPF and thus accuracy of soot mass estimation in DPF can be lowered during normal and regeneration condition when the pressure difference caused by non-carbon based PM is not recognized correctly. Also unevenly accumulated PM inside of DPF can produce locally different exhaust gas temperature and thus it can lower accuracy of soot mass estimation during regeneration. This study focuses on estimation of soot oxidation rate not by conventional pressure difference but by exhaust gas analysis at up and downstream of DPF. Results, strong correlations between CO2 -fuel mass ratio and soot oxidation was observed.  相似文献   

13.
This study was conducted for the experimental comparison of particulate emission characteristics between the European and World-Harmonized test cycles for a heavy-duty diesel engine as part of the UN/ECE PMP ILCE of the Korea Particulate Measurement Program. To verify the particulate mass and particle number concentrations from various operating modes, ETC/ESC and WHTC/WHSC, were evaluated. Both will be enacted in Euro VI emission legislation. The real-time particle emissions from a Mercedes OM501 heavy-duty golden engine with a catalyst based uncoated golden DPF were measured with CPC and DMS during daily test protocol. Real-time particle formation of the transient cycles ETC and WHTC were strongly correlated with engine operating conditions and after-treatment device temperature. The higher particle number concentration during the ESC #7 to #10 mode was ascribed to passive DPF regeneration and the thermal release of low volatile particles at high exhaust temperature conditions. The detailed average particle number concentration equipped for golden DPF reached approximately 4.783E+11 #/kWh (weighted WHTC), 6.087E+10 #/kWh (WHSC), 4.596E+10 #/kWh (ETC), and 3.389E+12 #/kWh (ESC). Particle masses ranged from 0.0011 g/kWh (WHSC) to 0.0031 g/kWh (ESC). The particle number concentration and mass reduction of DPF reached about 99%, except for an ESC with a reduction of 95%.  相似文献   

14.
In order to investigate the influence of initial regeneration temperatures on diesel particulate filter (DPF) regeneration, an experimental study of DPF regeneration was implemented using a dielectric barrier discharge (DBD) reactor, aided by exhaust waste heat after engine flameout. DPF trapping characteristics and carbon deposit mass were discussed to facilitate further data analysis and calculation. DPF regeneration was then investigated by comparison analysis of deposit removal mass, backpressure drop, and internal temperature change. The results revealed that a large amount of particulate matter (PM) was deposited in DPF with a high filtration efficiency of about 90 %. The deposit removal rate and percentage drop of the backpressure both maximized at the initial temperature of 100 °C. During DPF regeneration, the sharp rise of internal temperature indicated vigorous PM incineration and high CO2 emission. The results successfully demonstrated DPF regeneration using non-thermal plasma injection during engine flameout, and prominent heat durability was achieved in this method.  相似文献   

15.
To study the effects of residual ash on the capture and regeneration of a diesel particulate filter (DPF), repeated capture and complete regeneration experiments were conducted. An engine exhaust particulate sizer was used to measure the particle size distribution of diesel in the front and back of DPF. Discrepancies in the size distribution of the particulate matter in repeated trapping tests were analyzed. To achieve complete DPF regeneration, a DPF regeneration system using nonthermal plasma technology was established. The regeneration carbon removal mass and peak temperatures of DPF internal measuring points were monitored to evaluate the effect of regeneration. The mechanism explaining the influence of residual ash on DPF capture and regeneration was thoroughly investigated. Results indicate that the DPF trapping efficiencies of the nuclear-mode particles and ultrafine particles have significant improvements with the increase quantity of residual ash, from 90 % and 96.01 % to 94.17 % and 97.27 %, respectively. The exhaust backpressure of the DPF rises from 9.41 kPa to 11.24 kPa. Heat transfer in the DPF is improved with ash, and the peak temperatures of the measuring points accordingly increase. By comparing the regeneration trials, the elapsed time for complete regeneration and time difference for reaching the peak temperature between adjacent reaction interfaces are extended with increased quantity of ash. The carbon removal mass rises by 34.00 %.  相似文献   

16.
通过调研国内外文献,介绍了柴油机颗粒物污染现状、颗粒物后处理技术、壁流式颗粒捕集器(DPF)的工作原理、材料和结构类型、捕集器再生技术和控制策略等。堇青石陶瓷壁流式DPF具有成本和性能方面的优势,占据主要市场份额,再生技术是DPF应用的关键。与主动再生技术相比,被动再生具有结构简单、节约油耗等优势,可通过涂敷催化剂、前置DOC和辅助主动再生等方法确保再生效果。  相似文献   

17.
基于某高压共轨柴油机建立了一维热力学仿真模型,对DPF选型进行了优化,并分析了不同海拔下米勒循环对柴油机及DPF性能的影响。结果表明,选择非对称结构以及适当增加载体目数都有利于降低DPF压降,同时可降低DPF对柴油机动力性、经济性及原始排放的影响。进气门早关可以降低柴油机有效燃油消耗率,提高热效率,降低NOx排放,但会导致颗粒物排放增加;同时可降低DPF压降,提高DPF捕集效率,且随海拔升高,进气门早关的时刻越小,作用越明显。在低海拔条件下,进气门晚关策略对柴油机动力性、经济性及排放特性均影响不大;在高海拔条件下,适当增加进气门晚关时刻可以改善柴油机性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号