首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ecosystem function of the oligotrophic Cretan Sea is explored through the development and application of a 3D ecological model. The simulation system comprises of two on-line coupled submodels: the 3D Princeton Ocean Model (POM) and the 1D European Regional Seas Ecosystem Model (ERSEM) adapted to the Cretan Sea. For the tuning and initialisation of the ecosystem parameters, the 1D version of the biogeochemical model is used.After a model spin up period of 10 years to reach a quasi-steady state, the results from an annual simulation are presented. A cost function is used as validation method for the comparison of model results with field data. The estimated annual primary and bacteria production are found to be in the range of the reported values. Simulation results are in good agreement with in situ data illustrating the role of the physical processes in determining the evolution and variability of the ecosystem.  相似文献   

2.
The fluctuations of catches of the deep-sea shrimp Aristeus antennatus (Risso, 1816) were analysed in the 6 ports of Catalonia where production is concentrated, based on monthly landings from 1988 to 2004. The 6 selected ports produced 300 t of red shrimp in 2004, or 80% of the total production in Catalonia. The series for each port showed clear interannual variability, with peaks of production in the early 1990s and more recently from 2001 to 2003. The time periods of the monthly data series, estimated by frequency analysis based on Fourier transform, varied around 7–8 years in the four central ports and 12–13 years in the two northern ports. Additionally, the different curves were not in phase: even in nearby ports, the maximum production is observed in different years. Since the North Atlantic Oscillation (NAO) index is an excellent proxy for long-term series of environmental variables, we aimed to explore relationships between the fluctuation of the NAO index and A. antennatus landings in the Catalan Sea. The correlation between the mean annual NAO index and the annual catches in each port was positive and significant with some time lags (from 1 to 3 years). The existence of clear patterns linking the NAO with marine ecological processes has been demonstrated in many studies, but the underlying ecological mechanisms are far from being well understood. The variations in environmental parameters linked to the NAO may act on biological organisms at different levels (individual, population) through physiology (metabolic and reproductive processes) or through trophic relationships, including ecological cascade effects. We propose that NAO-induced environmental variability may enhance food supply to A. antennatus and hence strengthen the reproductive potential of particular year classes, which result in increased catches 1 to 3 years later, although other possible effects of environmental variability on the population dynamics of this species are worth investigating.  相似文献   

3.
A modelling system for coupled physical–biogeochemical simulations in the water column is presented here. The physical model component allows for a number of different statistical turbulence closure schemes, ranging from simple algebraic closures to two-equation turbulence models with algebraic second-moment closures. The biogeochemical module consists of models which are based on a number of state variables represented by their ensemble averaged concentrations. Specific biogeochemical models may range from simple NPZ (nutrient–phytoplankton–zooplankton) to complex ecosystem models. Recently developed modified Patankar solvers for ordinary differential equations allow for stable discretisations of the production and destruction terms guaranteeing conservative and non-negative solutions. The increased stability of these new solvers over explicit solvers is demonstrated for a plankton spring bloom simulation. The model system is applied to marine ecosystem dynamics the Northern North Sea and the Central Gotland Sea. Two different biogeochemical models are applied, a conservative nitrogen-based model to the North Sea, and a more complex model including an oxygen equation to the Baltic Sea, allowing for the reproduction of chemical processes under anoxic conditions. For both applications, earlier model results obtained with slightly different model setups could be basically reproduced. It became however clear that the choice for ecosystem model parameters such as maximum phytoplankton growth rates does strongly depend on the physical model parameters (such as turbulence closure models or external forcing).  相似文献   

4.
Oxygen and phosphorus dynamics and cyanobacterial blooms in the Baltic Sea are discussed using results from the Swedish Coastal and Ocean Biogeochemical model (SCOBI) coupled to the Rossby Centre Ocean model (RCO). The high-resolution circulation model is used to simulate the time period from 1902 to 1998 using reconstructed physical forcing and climatological nutrient loads of the late 20th century. The analysis of the results covers the last 30 years of the simulation period. The results emphasize the importance of internal phosphorus and oxygen dynamics, the variability of physical conditions and the natural long-term variability of phosphorus supplies from land on the phosphorus content in the Baltic Sea. These mechanisms play an important role on the variability of available surface layer phosphorus in late winter in the Baltic Sea. The content of cyanobacteria increases with the availability of phosphorus in the surface layers of the Baltic proper and the probability for large cyanobacteria blooms in the model is rapidly increased at higher concentrations of excess dissolved inorganic phosphorus in late winter. The natural increase of phosphorus supplies from land due to increased river runoff since the early 1970s may to a large degree explain the increased phosphorus content in the Baltic proper. Another significant fraction of the increase is explained by the release of phosphorus from increased anoxic areas during the period. These results refer to the long-term variability of the phosphorus cycle. In accordance to earlier publications is the short-term (i.e. interannual) variability of the phosphorus content in the Baltic proper mainly explained by oxygen dependent sediment fluxes.  相似文献   

5.
The Black Sea general circulation is simulated by a primitive equation model with active free surface. The forcing is seasonally variable and is based on available climatic data. The model reproduces the main features of the Black Sea circulation, including the river discharge effects on the mean sea level and the Bosphorus outflow. Model results show that the simulated sea surface elevation increases in spring over the whole sea, reaching a maximum in the Danube delta area. In the same region, a minimum is observed in winter. The amplitude of the seasonal oscillations (about 8–12 cm over the whole basin) is of the same order of magnitude as the maximum horizontal variations (about 15–18 cm between the coastal areas and the basin interior). This strong signal formed mostly by river discharges, along with the seasonal variability in the other forcing functions and the local dynamics creates a well-pronounced interannual variability. The performance of the model in simulating the seasonal and interannual variability is critically analyzed, with a special attention on the cold intermediate water formation and the circulation in the upper 150 m. The simulations demonstrate that the source of intermediate waters is on the shelf, and that the water mass in the core of cold intermediate layer changes with time as a response to the periodic forcing at sea surface. This type of variability is characterized by pronounced interannual changes, proving that important differences could exist between water mass structure in different years, even when using identical atmospheric forcings each year.  相似文献   

6.
A major objective of the Palmer Long Term Ecological Research (Palmer LTER) project is to obtain a comprehensive understanding of the various components of the Antarctic marine ecosystem. Phytoplankton production plays a key role in this so-called high nutrient, low chlorophyll environment, and factors that regulate production include those that control cell growth (light, temperature, and nutrients) and those that control cell accumulation rate and hence population growth (water column stability, grazing, and sinking). Sea ice mediates several of these factors and frequently conditions the water column for a spring bloom which is characterized by a pulse of production restricted in both time and space. This study models the spatial and temporal variability of primary production within the Palmer LTER area west of the Antarctic Peninsula and discusses this production in the context of historical data for the Southern Ocean. Primary production for the Southern Ocean and the Palmer LTER area have been computed using both light-pigment production models [Smith, R.C., Bidigare, R.R., Prézelin, B.B., Baker, K.S., Brooks, J.M., 1987. Optical characterization of primary productivity across a coastal front. Mar. Biol. (96), 575–591; Bidigare, R.R., Smith, R.C., Baker, K.S., Marra, J., 1987. Oceanic primary production estimates from measurements of spectral irradiance and pigment concentrations. Global Biogeochem. Cycles (1), 171–186; Morel, A., Berthon, J.F., 1989. Surface pigments, algal biomass profiles and potential production of the euphotic layer—relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr. (34), 1545–1562] and an ice edge production model [Nelson, D.M., Smith, W.O., 1986. Phytoplankton bloom dynamics of the western Ross Sea ice edge: II. Mesoscale cycling of nitrogen and silicon. Deep-Sea Res. (33), 1389–1412; Wilson, D.L., Smith, W.O., Nelson, D.M., 1986. Phytoplankton bloom dynamics of the Western Ross Sea ice edge: I. primary productivity and species-specific production. Deep-Sea Res., 33, 1375–1387; Smith, W.O., Nelson, D.M., 1986. Importance of ice edge phytoplankton production in the Southern Ocean. BioScience (36), 251–257]. Chlorophyll concentrations, total photosynthetically available radiation (PAR) and sea ice concentrations were derived from satellite data. These same parameters, in addition to hydrodynamic conditions, have also been determined from shipboard and Palmer Station observations during the LTER program. Model results are compared, sensitivity studies evaluated, and productivity of the Palmer LTER region is discussed in terms of its space time distribution, seasonal and interannual variability, and overall contribution to the marine ecology of the Southern Ocean.  相似文献   

7.
A sequential assimilative system has been implemented into a coupled physical–biogeochemical model (CPBM) of the North Atlantic basin at eddy-permitting resolution (1/4°), with the long-term goal of estimating the basin scale patterns of the oceanic primary production and their seasonal variability. The assimilation system, which is based on the SEEK filter [Brasseur, P., Verron, J., 2006. The SEEK filter method for data assimilation in oceanography: a synthesis. Ocean Dynamics. doi: 10.1007/s10236-006-0080-3], has been adapted to this CPBM in order to control the physical and biogeochemical components of the coupled model separately or in combination. The assimilated data are the satellite Topex/Poseidon and ERS altimetric data, the AVHRR Sea Surface Temperature observations, and the Levitus climatology for salinity, temperature and nitrate.In the present study, different assimilation experiments are conducted to assess the relative usefulness of the assimilated data to improve the representation of the primary production by the CPBM. Consistently with the results obtained by Berline et al. [Berline, L., Brankart, J-M., Brasseur, P., Ourmières, Y., Verron, J., 2007. Improving the physics of a coupled physical–biogeochemical model of the North Atlantic through data assimilation: impact on the ecosystem. J. Mar. Syst. 64 (1–4), 153–172] with a comparable assimilative model, it is shown that the assimilation of physical data alone can improve the representation of the mixed layer depth, but the impact on the ecosystem is rather weak. In some situations, the physical data assimilation can even worsen the ecosystem response for areas where the prior nutrient distribution is significantly incorrect. However, these experiments also show that the combined assimilation of physical and nutrient data has a positive impact on the phytoplankton patterns by comparison with SeaWiFS ocean colour data, demonstrating the good complementarity between SST, altimetry and in situ nutrient data. These results suggest that more intensive in situ measurements of biogeochemical nutrients are urgently needed at basin scale to initiate a permanent monitoring of oceanic ecosystems.  相似文献   

8.
A one-dimensional (1D) coupled physical–microbiological model has been applied to a site in the central North Sea. The impact of the choice of the turbulence closure scheme on the modelling the primary production has been investigated.The model was run with four different parameterisations of vertical mixing of heat, momentum and dissolved and suspended matters, using M2 tidal forcing and the hourly mean meteorological forcing of 1989 to reproduce the annual thermal structure and primary production. The four mixing parameterisations are: Level 2 turbulence closure scheme [Mellor, G.L., Yamada, T., 1974. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 31, 1791–1806; Mellor, G.L., Yamada, T., 1982. Development of a turbulence closure model for geophysical Fluid problems. Rev. Geophys. Space Phys. 20 (4) 851–875] using an explicit numerical scheme [Sharples, J., Tett, P., 1994. Modelling the effect of physical variability on the midwater chlorophyll maximum. J. Mar. Res. 52, 219–238]; a version of the Level 2.5 turbulence closure scheme [Galperin, B., Kantha, L.H., Hassid, S., Rosati, A., 1988. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci. 45, 55–62; Ruddick, K.G., Deleersnijder, E., Luyten, P.J., Ozer, J., 1995. Haline stratification in the rhine/meuse freshwater plume: a 3D model sensitivity analysis. Cont. Shelf Res. 15 (13) 1597–1630] simplified to use an algebraic mixing length by Sharples and Simpson [Sharples, J., Simpson, J.H., 1995. Semidiurnal and longer period stability cycles in the Liverpool Bay region of freshwater influence. Cont. Shelf Res. 15, 295–313], also solved explicitly; the same simplified L2.5 scheme with an implicit numerical solution and modified vertical discretisation scheme [Annan, J.D., 1999. Numerical methods for the solution of the turbulence energy equations in the shelf seas. Int. J. Numer. Methods Fluids 29, 193–206]; and another version of the same scheme (but using a different algebraic mixing length) as described by Xing and Davies [Xing, J., Davies, A.M., 1996a. Application of turbulence energy models to the computation of tidal currents and mixing intensities in the shelf edge regions. J. Phys. Oceanogr. 26, 417–447; Xing, J., Davies, A.M., 1996b. Application of a range of turbulence models to the computation of tidal currents and mixing intensities in shelf edge regions. Cont. Shelf. Res. 16, 517–547; Xing, J., Davies, A.M., 1998. Application of a range of turbulence energy models to the computation of the internal tide. Int. J. Numer. Methods Fluids 26, 1055–1084]. Various model outputs at the sea surface and in depth profiles have been compared with data collected in 1989 as part of the North Sea Project [Huthnance, J.M., 1990. Progress on North Sea Project. NERC News, vol. 12, pp. 25–29, UK]. It is shown that the biological results are extremely sensitive to the small changes in the physical conditions, which arise due to the different turbulence schemes tested. The timing of the spring bloom and the maintenance of the midwater chlorophyll maximum all differ greatly between model runs, and the gross primary production varies by a factor of two from the highest to lowest results. The simplified Level 2.5 scheme, implemented using the numerical methods of Annan [Annan, J.D., 1999. Numerical methods for the solution of the turbulence energy equations in the shelf seas. Int. J. Numer. Methods Fluids 29, 193–206], produces results, which give the best agreement with the available data.  相似文献   

9.
An upgraded and revised physically–biologically coupled, nested 3D model with 4 km grid size is applied to investigate the seasonal carbon flux and its interannual variability. The model is validated using field data from the years for which the carbon flux was modelled, focussing on its precision in space and time, the adequacy of the validation data, suspended biomass and vertical export. The model appears to reproduce the space and time (± 1 week and 10 nautical miles) distribution of suspended biomass well, but it underestimates vertical export of carbon at depth. The modelled primary production ranges from 79 to 118 g C m 2 year 1 (average 93 g C m 2 year 1) between 4 different years with higher variability in the ice-covered Arctic (± 26%) than in the Atlantic (± 7%) section. Meteorological forcing has a strong impact on the vertical stratification of the regions dominated by Atlantic water and this results in significant differences in seasonal variability in primary production. The spatially integrated primary production in the Barents Sea is 42–49% greater during warm years than the production during the coolest and most ice-covered year.  相似文献   

10.
This paper explores the relationships between the spatial patterns of the distribution of the young hakes of the year (YOY) and the oceanographical features in two areas of the Central Mediterranean (the Ligurian Sea and the Strait of Sicily), characterised by the occurrence of straits and channels. Comparative and correlative approaches were used to investigate coupling between biological and physical patterns. Density indices of the YOY were derived from annual trawl surveys from 1994 to 2004 in spring and autumn. Mean patterns of the YOY distributions were compared with the mesoscale oceanographical features reported in literature. No evident trends in recruitment strength were found in either areas. Inter-annual variability in YOY abundance in the Ligurian Sea was higher than in the Strait of Sicily. The location of nursery grounds in the study areas coincides with zones of relatively higher production, where upwelling and other enrichment processes regularly occur. The presence of predictable eddies and the frontal systems play a major role in the localization of nursery areas in the Strait of Sicily, maintaining their stable position throughout the years. The strongest transport of southern waters from the Tyrrhenian to the Ligurian Sea, due to the East Corsica Current, which is negatively correlated to winter North Atlantic Oscillation, is associated with the highest abundance of hake recruits in the nurseries of the Northern Ligurian Sea.  相似文献   

11.
The Arabian Sea exhibits a complex pattern of biogeochemical and ecological dynamics, which vary both seasonally and spatially. These dynamics have been studied using a one-dimensional vertical hydrodynamic model coupled to a complex ecosystem model, simulating the annual cycle at three contrasting stations. These stations are characterised by seasonally upwelling, mixed-layer-deepening and a-seasonal oligotrophic conditions, respectively, and coincide with extensively measured stations on the two JGOFS ARABESQUE cruises in 1994. The model reproduces many spatial and temporal trends in production, biomass, physical and chemical properties, both qualitatively and quantitatively and so gives insight into the main mechanisms responsible for the biogeochemical and ecological complexity. Monsoonal systems are typified by classical food web dynamics, whilst intermonsoonal and oligotrophic systems are dominated by the microbial loop. The ecosystem model (ERSEM), developed for temperate regions, is found to be applicable to the Arabian Sea system with little reparameterisation. Differences in in-situ physical forcing are sufficient to recreate contrasting eutrophic and oligotrophic systems, although the lack of lateral terms are probably the greatest source of error in the model. Physics, nutrients, light and grazing are all shown to play a role in controlling production and community structure. Small-celled phytoplanktons are predicted to be dominant and sub-surface chlorophyll maxima are robust centers of production during intermonsoon periods. Analysis of carbon fluxes indicate that physically driven outgassing of CO2 predominates in monsoonal upwelling systems but ecological activity may significantly moderate CO2 outgassing in the Arabian Sea interior.  相似文献   

12.
The Polar Front in the Japan/East Sea separates the southern warm water region from the northern cold water region. A merged TOPEX/POSEIDON and ERS-1/2 altimeter dataset and upper water temperature data were used to determine the frontal location and to examine the structure of its interannual variability from 1993 to 2001. The identified frontal location, where sea surface height gradient has a maximum about 10–20 cm over the horizontal distance of 100 km, corresponds well to the maximum subsurface horizontal temperature gradient. The front migrates more widely (36°N–41°N) in the western part of the sea than in the eastern part. The interannual migration induces large variability in upper water temperatures and sea surface height in the western region. Responsible physical mechanisms were studied using a reduced-gravity model. Differences between inflow and outflow change the total volume of warm water, and total warm water volume change in the warm water region uniformly pushes the front in the meridional direction across its mean position in the model simulation. Interannual variation of wind stress causes relatively wide migration of the modeled front in the western part.  相似文献   

13.
The ballast water from ships carries marine organisms that have invasive potential. The International Maritime Organization Ballast Water Management Convention (2004) requires ballast water exchange or ballast water management (BWM) systems either onboard or ashore. Ships can be exempted on the basis of risk assessment, when exclusively sailing between specific ports or in an enclosed area. In reply to our questionnaire, the shipping sector argues that the North Sea is ecologically homogeneous and exemptions could therefore be granted. This paper proposes that the North Sea area is, in fact, not homogeneous in terms of hydrographical and biological conditions; therefore, ballast water is a relevant transport mechanism for organisms. Within the North Sea, the short shipping routes indicate a high risk for survival. We examined actual simulation models for ballast water risk assessment in the North Sea, and we have identified the major parameters that need to be included in such models. These models provided a basis; they further need to be combined and adapted for the purpose of evaluating the rationale for an exemption. We concluded that exemptions from BWM are not recommended for the North Sea area. Anticipating the Ballast Water Management Convention, ship owners might do well to study possibilities for installing BWM systems onboard.  相似文献   

14.
Several studies on coupled physical–biogeochemical models have shown that major deficiencies in the biogeochemical fields arise from the deficiencies in the physical flow fields. This paper examines the improvement of the physics through data assimilation, and the subsequent impact on the ecosystem response in a coupled model of the North Atlantic. Sea surface temperature and sea surface height data are assimilated with a sequential method based on the SEEK filter adapted to the coupling needs. The model domain covers the Atlantic from 20°S to 70°N at eddy-permitting resolution. The biogeochemical model is a NPZD-DOM model based on the P3ZD formulation. The results of an annual assimilated simulation are compared with an annual free simulation.With assimilation, the representation of the mixed layer depth is significantly improved in mid latitudes, even though the mixed layer depth is generally overestimated compared to the observations. The representation of the mean and variance of the currents is also significantly improved.The nutrient input in the euphotic zone is used to assess the data assimilation impact on the ecosystem. Data assimilation results in a 50% reduction of the input due to vertical mixing in mid-latitudes, and in a four- to six-fold increase of the advective fluxes in mid-latitudes and subtropics. Averaged zonally, the net impact is a threefold increase for the subtropical gyre, and a moderate (20–30%) decrease at mid and high latitudes.Surface chlorophyll concentration increases along the subtropical gyre borders, but little changes are detected at mid and high latitudes. An increase of the primary production appears along the Gulf Stream path, but it represents only 12% on average for mid and high latitudes. In the subtropical gyre centre, primary production is augmented but stays underestimated (20% of observations). These experiments show the benefits of physical data assimilation in coupled physical–biogeochemical applications.  相似文献   

15.
The number of variables involved in the monitoring of an ecosystem can be high and often one of the first stages in the analysis is to reduce the number of variables. We describe a method developed for geological purposes, using the information theory, that enables selection of the most relevant variables. This technique also allows the examination of the asymmetrical relationships between variables. Applied to a set of physical and biological variables (plankton assemblages in four areas of the North Sea), the method shows that biological variables are more informative than physical variables although the controlling factors are mainly physical (sea surface temperature in winter and spring). Among biological variables, diversity measures and warm-water species assemblages are informative for the state of the North Sea pelagic ecosystems while among physical variables sea surface temperature in late winter and early spring are highly informative. Although often used in bioclimatology, the utilisation of the North Atlantic Oscillation (NAO) index does not seem to provide a lot of information. The method reveals that only the extreme states of this index has an influence on North Sea pelagic ecosystems. The substantial and persistent changes that were detected in the dynamic regime of the North Sea ecosystems and called regime shift are detected by the method and corresponds to the timing of other shifts described in the literature for some European Systems such as the Baltic and the Mediterranean Sea when both physical and biological variables are considered.  相似文献   

16.
A nitrogen-based, pelagic ecosystem model has been coupled with an eddy-permitting ocean general circulation model of the Arabian Sea, and the results are compared with observations. The seasonal variability simulated by the model is in good agreement with observations: during the southwest monsoon season, phytoplankton increases in the western Arabian Sea due to upwelling along the coast; during the northeast monsoon season, phytoplankton abundance is large in the northern Arabian Sea because of the enhanced nitrate entrained by relatively deep vertical mixing. Two major differences are, however, found in the basin-wide comparison between model results and observations: an unrealistic nitrate maximum in the subsurface layer of the northern Arabian Sea and too low primary production in oligotrophic regimes. The former may be attributed to the lack of denitrification in the model. Possible causes for the latter include the present model's underestimation of fast nutrient recycling, the neglect of carbon fixation decoupled from nitrogen uptake and of nitrogen fixation, and inadequate nitrate entrainment by mixed layer deepening. The rate at which simulated nitrate increases in the northern Arabian Sea is 11–24 TgN/year, and should correspond to the denitrification rate integrated over the northern Arabian Sea assuming that the loss of nitrogen through denitrification is balanced by advective input. The model does not reproduce the observed phytoplankton bloom in the late southwest monsoon season. Possible causes are that the mixed layer may be too shallow in summer and that the horizontal transport of nitrate from the coast of Oman may be too weak. Sensitivity experiments demonstrate a strong dependence of the simulated primary productivity on the vertical mixing scheme and on the inclusion of a fast recycling loop in the ecosystem model.  相似文献   

17.
Variations in oxygen conditions below the permanent halocline influence the ecosystem of the Baltic Sea through a number of mechanisms. In this study, we examine the effects of physical forcing on variations in the volume of deep oxygenated water suitable for reproductive success of central Baltic cod. Recent research has identified the importance of inflows of saline and oxygenated North Sea water into the Baltic Sea for the recruitment of Baltic cod. However, other processes have been suggested to modify this reproduction volume including variations in timing and volume of terrestrial runoff, variability of the solubility of oxygen due to variations in sea surface temperature as well as the influence of variations in wind stress. In order to examine the latter three mechanisms, we have performed simulations utilizing the Kiel Baltic Sea model for a period of a weak to moderate inflow of North Sea water into the Baltic, modifying wind stress, freshwater runoff and thermal inputs. The model is started from three-dimensional fields of temperature, salinity and oxygen obtained from a previous model run and forced by realistic atmospheric conditions. Results of this realistic reference run were compared to runs with modified meteorological forcing conditions and river runoff.From these simulations, it is apparent that processes other than major Baltic inflows have the potential to alter the reproduction volume of Baltic cod. Low near-surface air temperatures in the North Sea, the Skagerrak/Kattegat area and in the western Baltic influence the water mass properties (high oxygen solubility). Eastward oriented transports of these well-oxygenated highly saline water masses may have a significant positive impact on the Baltic cod reproduction volume in the Bornholm Basin.Finally, we analysed how large scale and local atmospheric forcing conditions are related to the identified major processes affecting the reproduction volume.  相似文献   

18.
The characteristics and interannual variability of the deep water masses in the North and Central Aegean Sea are being investigated through the data sets of the Hellenic Navy Hydrographic Service (HNHS) and the MEDATLAS 1997 project. In the period between 1987 and 1993, the densest deep water in the Mediterranean has been produced in the Aegean Sea (with σθ densities reaching up to 29.6 kg/m3), contributing to what has been called the Eastern Mediterranean Transient. The examination of time series of mean integrated values of θ, S and σθ below the depth of 500 dbar reveals the significant deep water density increase after 1987 in all of the deep basins in the area. Data suggest that the density increase of 1987–1988 is mainly attributed to a temperature drop, while in 1993, an even more intense density increase is observed, characterized this time by an abrupt salinity increase. We assume that the increased salinity necessary to produce deep water masses with the observed characteristics was not locally produced but rather advected from the Levantine through the South Aegean. After 1993, no new deep water formation episodes have been observed. A series of ΘS diagrams derived from HNHS CTD casts covering the period between 1993 and 2000, depict the different characteristics of the deep water masses in the area. As 1993 marks the end of the formation period, observed differences between basins in that year must be attributed to different deep water formation sites. Thereafter, the stagnating deep water in the North and Central Aegean basins has been slowly gaining buoyancy by losing salt and gaining heat. The rate at which this phenomenon takes place varies between different deep basins. It is suggested that these variations are linked to the different volumes of each basin as well as to the general circulation features of the Aegean Sea.  相似文献   

19.
Previous optimum multiparameter analyses have investigated spatial distribution of water masses and reported successful results. This study tests the method further with application to a time series to examine temporal variability in water mass distribution. Observations collected from the Sargasso Sea are utilised, mainly to detect well-documented property changes that have occurred in Labrador Sea Water, but also possible fluctuations in water mass contributions as a whole.The results show much structure and variability in the contributions of Central Water and upper deep waters in the depth range 900–2000 m. It is proposed that the passage of warm and cold core eddies is indicated by these changes in relative contributions of water masses, although quantitative comparison of satellite altimetry data with the model results is not conclusive.Significant irregularities in the distribution of Labrador Sea Water are also revealed by the model. Through-flow of modified (since the early 1990s) Labrador Sea Water is denoted in the results by an apparent absence from mid-1995 to early 1998. This suggests a transit time of 5–6 years between the Labrador Sea and Bermuda, which is consistent with observational findings described in the literature.  相似文献   

20.
A new transport model for metals (named NOSTRADAMUS) has been developed to predict concentrations and distributions of Cd, Cu, Ni, Pb and Zn in the southern North Sea. NOSTRADAMUS is comprised of components for water, inorganic and organic suspended particulate matter transport; a primary production module contributes to the latter component. Metal exchange between dissolved (water) and total suspended particulate matter (inorganic + organic) phases is driven by distribution coefficients. Transport is based on an existent 2-D vertically integrated model, incorporating a 35 × 35 km grid. NOSTRADAMUS is largely driven by data obtained during the Natural Environment Research Council North Sea Project (NERC NSP). The sensitivity of model predictions to uncertainties in the magnitudes of metal inputs has been tested. Results are reported for a winter period (January 1989) when plankton production was low. Simulated ranges in concentrations in regions influenced by the largest inflows, i.e. the NE English coast and the Southern Bight, are similar to the ranges in the errors of the concentrations estimated at the northern and southern open sea boundaries of the model. Inclusion of uncertainties with respect to atmospheric (up to ± 54%) and riverine (± 30%) inputs makes little difference to the calculated concentrations of both dissolved and particulate fractions within the southern North Sea. When all the errors associated with the inputs are included there is good agreement between computed and observed concentrations, and that for dissolved and particulate Cd, Cu and Zn, and dissolved Ni and Pb, many of the observations fall within, or are close to, the range of values generated by the model. For particulate Pb, model simulations predict concentrations of the right order, but do not reproduce the large scatter in actual concentrations, with simulated concentrations showing a bias towards lower values compared to those observed. A factor which could have contributed to observed concentrations, and which is not included in the model, is considered to be a substantial benthic input of dissolved lead during this winter period, coupled to a rapid and extensive scavenging of the dissolved lead to particles. Significant reductions in riverine and aeolian inputs of total Cd and Cu of 70% and 50%, respectively, consistent with aims of North Sea Conferences, are predicted to lead to minor decreases (~ 10%) in water column concentrations of dissolved and particulate Cd and Cu, except near river sources, where maximum reductions of ~ 30–40% may occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号