首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
针对城市Y型交叉口群中车流相互交织而引起的交通安全、通行效率低下等问题,基于绿波时距图,以双向绿波带宽最大为目标,建立了一种面向Y型交叉口群双周期绿波信号协调控制模型。该模型能够在时间顺序上分离上游驶来的两股车流,使其分别依次通过下游交叉口,从而解决了车流相互交织而引起的安全、效率等问题。实际案例与仿真结果表明:相比于单点信号配时方案,所提出的模型在降低车辆延误时间,减少车辆停车次数,提升交通安全等方面有显著效果。这表明该模型对提升Y型交叉口群的通行效率与交通安全具有显著效果,具有一定的理论意义与实践价值。  相似文献   

2.
为解决连续流交叉口车辆二次停车和人-车冲突问题,防止车辆排队溢出,破坏连续流交叉口稳定的运行状态,提出人-车信号协调优化控制策略。根据车流运行特征,协调主、预信号配时,优化信号相位方案,以车均延误最小为目标构建优化模型。通过仿真对比可知,本文模型计算的延误估算误差在5%以内。通过案例分析可知,现状方案南北左转车均延误和车均停车次数是优化方案的2倍以上,说明优化方案避免了车辆二次停车;从整个交叉口来看,优化方案在两种流量场景下,车均延误分别降低了27.8%、18.5%,提升了交叉口运行效率。通过敏感性分析发现,移位左转车道长度在100 m时,综合效益最佳。  相似文献   

3.
为建立交通信号协调控制算法并确定其适用条件,考虑车队离散、车辆转出、下游交叉口排队长度3个因素,在分析罗伯逊离散模型的基础上,提出了交叉口协调相位车流到达图式的预测方法,并根据车流到达时刻与协调相位绿灯启亮、结束时刻的关系,建立了协调相位车流延误的计算模型;以交通控制子区内各交叉口协调相位车流总延误最小为优化目标,以相位差为优化变量,设计了信号协调方案优化算法.仿真结果表明:与改进数解法相比,该算法降低了协调相位车流延误7.4%;随着交叉口间距、转出车辆数、下游排队长度的增加,信号协调控制效益逐渐下降.   相似文献   

4.
在绿波协调控制交叉口群中,绿波段前沿交叉口对于交通流具有整流特性.针对单一交叉口延误计算方法对交叉口群整流特性考虑不足的问题,基于车流运行时间偏移呈正态分布的假设,采用非集计方法分别提出了绿波带内、绿波带间和右转车流的延误计算模型.分析了交叉口群对车流的整流作用,以最小二乘拟合法为基础,提出了交叉口进口道车辆到达函数拟合方法.分别考虑交叉口群绿波带内和绿波带间的车流运行时间偏移,以单车延误期望累积建立了交叉口进口道车流延误计算模型.利用交叉口车流数据验证了该方法的实用性和有效性.  相似文献   

5.
为弥补对包含有轨电车的干线绿波优化能力的不足, 提出了一种基于多路径绿波模型的干线绿波优化模型, 确保干线转向有轨电车与干线直行社会车辆的通行效率与独立运行; 确定了转向有轨电车线路的信号相位与干线社会车辆信号相位之间的协调关系, 构建了干线绿波模型的基本约束条件; 考虑有轨电车停车过程的加、减速特性, 以及通过交叉口时清空时间的要求, 建立了有轨电车补充约束条件; 设置了相位顺序控制变量, 增大解空间, 提高了干线绿波优化模型的建模能力; 设置旅行时间变量, 保证社会车辆行驶在路段规定的安全速度之内, 确保有轨电车上、下行总旅行时间一致, 保障调度运行的高效合理; 在满足有轨电车绿波带宽基本要求的条件下, 构建了社会车辆绿波带宽最大化的目标函数; 应用干线绿波优化模型对南京麒麟镇有轨电车干线路段沿线4处交叉口进行了交通信号协调优化。研究结果表明: 干线绿波优化模型能对各交叉口信号相序进行优化, 为有轨电车提供包含转弯相位的绿波; 优化后干线信号周期为142.4 s, 各交叉口相位差分别为0、116.8、52.0、5.7 s, 单方向社会车辆绿波带宽为26.6 s, 上、下行社会车辆绿信比达到37.4%, 有轨电车绿波带宽为10 s, 满足干线系统交通需求。   相似文献   

6.
中国城市机动车保有量快速上升,导致交通需求与供给之间的矛盾日益突出,城市交通拥堵日益严重。针对干线局部拥堵提出绿波带与红波带协调控制策略。其原理是:通过绿波带控制,利用下游交叉口和路段,对瓶颈交叉口的拥堵车流进行快速疏散和卸载;通过红波带控制,运用上游交叉口和路段的空间优势,有效地将到达瓶颈交叉口的车流分别截流在上游的交叉口和路段,延长其到达瓶颈交叉口的行程时间,以防止瓶颈交叉口的拥堵蔓延和上溯。选择交叉口进口道协调相位饱和度和路段排队长度比作为评估指标,讨论协调控制策略的启动与结束条件。通过交叉口关联度模型分析协调控制的范围,并对协调控制的绿波带和红波带进行控制方案设计。算例分析表明,绿波带与红波带协调控制策略可以明显降低车辆在干线交叉口上的平均停车次数(-15%)和平均延误(-27%),提高干线交通运行效率。  相似文献   

7.
设计了8种不同控制思路下的决策方案,并在每种决策方案下,综合考虑社会车流绿波带和公交车流绿波带,分析上游交叉口到达下游交叉口的时刻对绿波带的影响情况,建立了基于绿波带宽度的优化目标。以社会车流和公交车流能够获得的绿波带宽度之和最优为原则,确定出8种决策中的最佳决策,并对控制算法进行了验证。提出的信号配时优化方法不仅可以同时满足社会车流和公交车流需求,还可以实现绿波带最大化。  相似文献   

8.
提出一种新理念,即:通过干道交叉口信号控制,实现对中心区交叉口截流卸载.中心交叉口往干道外围交叉口设计单向绿波信号协调,使得车流向干道两端能够迅速卸载;外围交叉口往中心交叉口设计红波,使得车流在外围交叉口适当截流,以缓减城市干道中心区交叉口交通压力.以保山市正阳路为例,以中心交叉正阳路与保岫路交叉口为基准点,结合交叉口车辆单口放行方式的干道单向绿波协调控制,进行截流卸载设计.在工程实际应用中取得了较好的效果.  相似文献   

9.
在绿波协调控制交叉口群中,为分析公交优先控制对后续交叉口群的扰动,基于车流运行时间偏移分布,以概率期望描述了交叉口各相位绿时左端和右端时长变化引起的后续交叉口群在绿波带内、绿波带间的延误变化;采用组合优化的方法,以交叉口群在车速引导下的公交通行效益优化为上层模型,以交叉口群在公交优先控制下的延误优化为下层模型,对公交引导车速和信号控制参数进行协同优化.通过算例分析表明,公交优先控制模型有效提升了交叉口整体通行效益,最大化减小了对周边交叉口群的不利影响.  相似文献   

10.
为降低环形交叉口的平均延误时间,提高交叉口群车辆通行效率,以环形交叉口为研究对象,通过引入"虚拟信号控制环形交叉口"概念,对到达环岛的交通流进行错时分离,其次应用数解法提出主路径车流双向绿波协调控制方案,建立了基于主路径车流双向绿波协调控制的交叉口群相位差模型,最后利用VISSIM仿真软件对云南省曲靖市珠江源大道与建宁东路环形交叉口进行验证.结果表明:虚拟状态下主路径车辆通过环形交叉口数由66.36提高至88.69辆/100 s;车辆在环形交叉口平均停车次数为0.57次,较实际降低了10.9%;车辆平均延误时间较实际降低了23.8%;建立的交叉口群相位差模型能够较好地改善各个交叉口的延误效益.  相似文献   

11.
针对现有干线交通信号绿波控制方法采用平行等宽的绿波带宽,无法考虑相邻交叉口间交通流运行速度波动性的缺陷,引入了基于路段速度波动区间的不等绿波带宽,提出了干线交通双向绿波优化控制方法.该方法在满足非绿波相位交通需求的前提下,以相邻交叉口之间的绿波带宽最大化为优化目标,通过构建带宽最大化模型,调整相邻交叉口之间的相对相位差,并以重叠度检验为约束条件,防止了绿波带断层现象的产生,进而实现了干线道路交通信号的双向绿波控制.以昆山市长江路为例,基于效率层面的评价指标对提出的干线交通双向绿波优化控制方法性能进行评估,结果表明:该方法较之传统的绿波控制方法在绿波带宽方面增加了11.8%,在交通延误和车辆排队长度方面分别减少了15.34%和10.86%.  相似文献   

12.
为了提高平面交叉口的运行效率和安全性,本文在分析机动车与行人冲突情况的前提下,研究行人信号配时方法.从搭接相位的角度,在两相位信号控制交叉口,建立行人绿灯提前截止时间计算模型,在四相位信号控制交叉口,建立不同相序下的行人交通流绿灯提前启亮时间计算模型;从以行人交通流为关键交通流的角度,确定信号配时关键车流的流量临界值,进而计算信号配时参数,并以长春市某交叉口为例进行验证.研究结果表明,该配时方法可以大大提高行人的过街效率,减少甚至避免行人和机动车之间的冲突,提高交叉口的安全性和运行效率.  相似文献   

13.
为监控干线绿波协调控制系统的运行状态及控制效果,以确定干线不同交通信号控制方案的切换时点,给出了有效协调时间的定义及计算方法,对当前绿波协调控制系统的运行状态进行动态监控,并通过累计惩罚分值的方式确定绿波协调系统中的瓶颈交叉口,讨论了有效协调时间对信号控制方案切换时点的影响.模拟试验结果表明,采用有效协调时间能够有效地监控绿波协调控制系统的运行状态,准确地发现系统中的瓶颈交叉口,为改善干线交通组织及完善干线控制方案提供技术支持.  相似文献   

14.
为解决平行流交叉口左转多次停车问题,实现同一相位放行左转、直行和右转车流的同时,所有流向车辆最多停车一次,对平行流交叉口进行设计,提出两种设计方案,对比已有方案,选择左转右置的平行流交叉口作为研究对象,探讨其优劣. 根据车流运行特征,以车辆不存在二次停车,车车不冲突作为约束条件,建立优化模型,并进行效益分析. 结果显示,与传统经典十字交叉口控制相比,平行流交叉口使通行能力提升60%以上,车均延误下降约 70%. 本文提出的控制策略,在不牺牲车辆权益的情况下,能消除左转和直行冲突,提升交叉口通行能力,为平行流交叉口研究提供一个新的视角.  相似文献   

15.
为提升逆向可变车道交叉口通行效率,提出一种基于逆向可变车道交叉口信号配时优化方法.假设车辆到达服从泊松分布,基于逆向可变车道交叉口车流运行特征,构建了逆向可变车道交叉口通行能力和延误计算模型;以周期时长、主预信号控制、逆向可变车道长度及饱和度等为约束,交叉口通行能力最大和平均延误最小为目标,建立了交叉口信号配时双目标优化模型,采用模拟退火算法求解.选取南昌市某交叉口分析了其设置逆向可变车道后,在高、中、低流量及不同左转比例下的运行效果.结果表明,本文所提方法在不同流量下均能提高交叉口的通行能力并减少延误,且更适合高流量交叉口;当高流量交叉口左转比例大于 20%时,交叉口通行效率改善更加显著.  相似文献   

16.
受城市发展历史原因影响,畸形交叉口在中国城市老城区的分布较为普遍,其中包括K型交叉口。为了提升城市道路通行效率及安全水平,结合哈尔滨市5处典型K型交叉口调查数据,在分析其几何参数及交通流运行参数的基础上,构建K型交叉口运行参数-几何参数关系模型。通过交叉口的交通流线分析、交通冲突点计算、交通冲突强弱界定等步骤,提出一种旨在提高K型交叉口通行效率的信号控制方法。最后,以某典型K型交叉口为案例,对实施前后的交叉口交通流运行状态进行仿真与对比分析。结果表明,基于运行参数-几何参数关系的K型交叉口信号控制方法,可以减少车流在路网上的绕行时间,有效提升交叉口及其周边道路网的通行效率。  相似文献   

17.
针对现有数解法研究主要适用于单周期控制方式的不足,本文提出一种适于不等双周期的干道双向绿波协调控制数解法,通过重新定义双周期控制方式,打破了双周期交叉口信号周期时长固定为公共信号周期时长1/2的局限,并归纳了双周期交叉口的2种协调类型。本文算法首先通过计算干道的公共信号周期允许变化范围,为各交叉口选择合适的信号周期控制方式;其次,通过分析双周期交叉口的协调特点,推导出适用于双周期交叉口的理想交叉口间距计算公式;然后,通过设定双周期交叉口各相位绿信比的分配比,实现协调方向相位绿信比的分配;最后,以最大调整偏移绿信比之和最小为优化目标确定绿波协调控制方案。算例结果分析表明,与双周期模型法和单周期数解法相比,本文数解法求解方案的干道双向延误时间分别减少16.0%与19.6%,停车次数分别减少15.1%与15.5%,特别是本文数解法的求解方案能使支路车流和行人过街的平均延误时间较单周期数解法分别减少46.0%与50.7%。可见,本文数解法能够获得理想的绿波协调效果,扩大数解法的适用范围,在减少交叉口延误时间方面表现出明显优势。  相似文献   

18.
采用双层规划方法建立干线协调控制模型,模型以干线两相邻交叉口之间的行驶时间,关键流向的绿灯需求,交叉口绿信比,公共周期时长等参数为基础和约束,对干线协调控制信号方案进行优化,优化参数包括交叉口放行方式、各交叉口绿波起始和终止时刻以及双向绿波带宽,实例求解计算及仿真验证显示,本方法可以应用于干线绿波控制的优化设计.  相似文献   

19.
现有的绿波协调控制图解法和数解法存在干线交叉口处的绿灯启亮时刻难以与对应方向的车流到达时刻相匹配的问题,造成了部分时空资源的浪费,压缩了双向的绿波带宽,影响了干线协调控制的效果。针对这一问题,提出基于叠加相位设计方法的干线绿波协调控制方法。该方法在传统方法求解结果的基础上,根据绿波带的设计速度,插入叠加相位,灵活地错开调整交叉口沿干线的两个行驶方向的绿灯启亮时刻,更好地匹配其与对应方向车流的到达时间;以最大化双向绿波带宽为目标建立规划模型,并利用二分法设计求解算法,实现对最大绿波带宽和各交叉口配时的计算。研究结果表明:基于叠加相位的干线绿波协调控制方法可以实现在不改变绿波设计速度的情况下,有效增加双向绿波带宽,减小干线延误,缓解交通拥堵;相较于传统的绿波协调控制方法,该方法将绿波带宽提高了140%,将干线的平均延误减小了86.2 s,有效缩短了各交叉口的行程时间。  相似文献   

20.
《黑龙江交通科技》2016,(1):132-134
提供了一种基于信号配时优化软件Synchro进行多交叉口协调控制的方法,阐述了Synchro进行信号周期时长优化的基本原理以及绿波交通的主要控制因素。以宁波通途路部分路段(徐戎路~沧海路)为例,详细介绍了利用Synchro进行干道多交叉路口信号配时的协调控制的具体方法,得到优化配时方案及沿线绿波时距图。随后利用Sim Traffic进行交通仿真模拟,结果显示各交叉口延误率、路段平均车速、车辆排队现象已得到显著改善,部分车流可以实现绿波交通。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号