首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
[Objective]In order to reduce the switching frequency of an intermediate frequency inverter power supply, ensure the quality of the output waveform and realize digitalization easily, a SPWM sampling method based on a tangent-secant midpoint approximation is proposed. [Methods]It is proven by deduction that the quantitative relationship of the natural sampling method can be approximated, and a Matlab/Simulink simulation model is built. The algorithm is designed and applied to an intermediate frequency inverter device, and the correctness of the proposed method is verified in the two aspects of simulation and experiment. [Results]The simulation results show that the total harmonic distortion (THD) of the output waveform based on the tangent-secant midpoint approximation method is 2.64%, lower than the 3.99% of the symmetrical regular sampling method. The waveform quality of the tangent-secant midpoint approximation method is obviously better than that of the symmetrical regular sampling method, as it not only reduces the switching frequency but also takes into account the requirements of THD. [Conclusions]SPWM sampling based on tangent-secant midpoint approximation is applied to the intermediate frequency power supply and is able to effectively overcome the shortcomings of the low-quality output waveform and high switching frequency of the symmetrical regular sampling method. Both theoretical analysis and engineering practice verify the rationality and correctness of the proposed method, and it can be widely extended to the field of intermediate frequency power supply installation. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

3.
[Objective]This paper aims to study the characteristics and calculation method of the vibration and sound radiation of single ring-stiffened cylindrical shells with porous fiber composite materials installed in the inner wall under acoustic excitation. [Method ] Based on the equivalent fluid theory model of Johnson–Champoux–Allard (JCA) and the transfer matrix of the multilayer medium, a theoretical formula of the sound absorption coefficient of multilayer sound absorption structures is derived. The three methods for calculating the vibration and sound radiation of a single ring-stiffened cylindrical shell with porous fiber materials under acoustic excitation, namely acoustic solid modeling of porous media, finite element model combined with theoretical formula and imposition of impedance boundary on sound absorption coefficient, are then verified and compared. Finally, the influences of sound-absorbing material's thickness, backed-air gap, static flow resistance, and material arrangement order on the acoustic absorption performance of the cylindrical shell are investigated. [Results]The results show that laying porous fiber composite materials on the cylindrical shell internally can reduce the vibration and acoustic radiation of cylindrical shell structure. The sound absorption coefficient curve can quickly and effectively predict the resulting trend of the vibration and sound radiation of the cylindrical shell. [Conclusion]The acoustic absorption performance of sound absorption structures can be effectively improved through the rational design of their properties and arrangement order of the sound-absorbing materials in order to achieve the purpose of vibration and noise reduction. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

4.
[Objectives]For marine nuclear power plants, the relative displacement of the pump supported by a vibration isolation system should be strictly restricted. In order to improve the shock resistance of a vibration isolation system with displacement limiters, the parameter optimization and parametric deviation influence are studied. [Methods]The theoretical model of a double-stage vibration isolation system with typical limiter parameters is established, the analysis of the shock response characteristics of the system is carried out using the direct integration method, the optimal limiter parameters are obtained using a genetic algorithm, and the influence of parameter deviation on the shock resistance of the system is studied. [Results]Limiter parameters significantly affect the shock response characteristics of the vibration isolation system. The optimal limiter parameters improve the shock resistance of the system, but parameter deviation has a great influence on shock resistance. Based on the influence of parameter deviation, a deviation control strategy is proposed in which the elastic parameter should have a positive deviation and the gap parameter a negative deviation. The simulation results show that the proposed strategy can effectively alleviate the shock resistance degradation caused by deviation.[Conclusions]The results of this study can be used to guide the design, manufacturing and variation control of limiters for vibration isolation systems. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

5.
[Objective]Aiming at the problem of too many influencing factors and too little reference data for determining the dimensions of medium-sized cruise ships in the concept phase, a simplified multi-objective optimization method based on the fitting of dimensions and performance is proposed. [Method]First, the dimension relations of medium-sized cruise ships are analyzed and the influence of the latest SOLAS requirements used to determine the optimization range. Second, the influence of cruise ship dimensions on space, resistance, stability and seakeeping are analyzed. Next, based on the principles of genetic algorithms, a multiobjective optimization algorithm with high robustness and high engineering adaptability is determined to establish a multi-objective optimization model for the concept design of medium-sized cruise ships. Finally, the Pareto solution obtained by multi-objective optimization is analyzed to provide initial references for determining the dimensions of the target cruise ship. [Results]Implemented via a genetic algorithm, the optimization program proposed herein is applied in the concept design of a medium-sized cruise ship in order to optimize the initial dimensions, thereby achieving the expected outcome of providing reasonable initial dimensions for cruise ship design. [Conclusion ] The proposed simplified multi-objective optimization model can provide feasible initial dimensions for medium-sized cruise ships in the concept phase. As the Pareto solution obtained by multi-objective optimization has different focuses such as resistance and stability, the most suitable solution needs to be selected according to the design object. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

6.
[Objectives]This paper aims to address the numerical simulation problems of the dynamic response of ships subject to near-, medium- and far-field underwater explosions by establishing several numerical methods and calculation models. [Methods]First, load and fluid-structure interaction models are established on the basis of the Eulerian finite element method and acoustic finite element method using the field-split technique, and FSLAB fluid-structure interaction software is developed. Next, near-, medium- and far-field underwater explosions are numerically simulated respectively. The shock wave propagation law, bubble shape and load evolution characteristics of near free-surface and near-wall underwater explosions are obtained, and the shock response characteristics of a spherical shell and ship subject to far-field underwater explosions are analyzed. Finally, the FSLAB software results are compared with the analytical solutions, reference solutions and experimental data. [Results]The results show that the FSLAB fluid-structure interaction software developed in this paper is effective and accurate in simulating the impact damage of underwater explosions on warships. [Conclusion]This study can provide a basis and support for the power assessment of underwater anti-explosion and shock design of warships. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

7.
[Objective]This paper aims to establish a dynamic model of a floating raft vibration isolation system with a liquid tank in order to study the mass effect of the liquid medium, tank form, structural stiffness and loading rate on acoustic performance. [Methods]A floating raft system with a cuboidal or cylindrical liquid tank is taken as the research object, and a fluid-structure coupling finite element dynamic model is established. The dynamic force transmission rate and power flow are then used to evaluate the acoustic performance of the system. The influence of the mass effect of the liquid medium, tank form, structural stiffness and loading rate of tank volume on the acoustic performance of the floating raft system are analyzed.[Results]The results show similar laws obtained through the calculation and analysis of the floating raft system with two types of tanks. The structural stiffness of the tank affects the mass effect of the liquid medium in the tank to a certain extent. [Conclusions]If full advantage is to be taken of the liquid mass effect in the tank with a large loading rate to improve the acoustic performance of the floating raft system, the design of the liquid tank and raft structure must have sufficient stiffness. In addition, under the condition that the floating raft structure has sufficient stiffness, its acoustic performance will improve significantly as the tank loading rate increases in the relevant low frequency range. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

8.
流场中任意厚度阻尼复合圆柱壳的声辐射(英文)   总被引:2,自引:1,他引:1  
The insertion loss of acoustic radiation of damped cylindrical shell described by 3-D elasticity Navier equations under radial harmonic applied load in fluid is presented. The classical integral transform technique, potential theory and Lamè resolution are used to derive the solutions of Navier equations. The higher precision inversion computation is introduced to solve the linear equations. Comparing with acoustic radiation of one-layer cylindrical shell, the influence of thickness, mass density, dilatational wave loss factor and Young's modulus of damping material and circumferential mode number of the cylindrical shell on the insertion loss is concluded. The theoretical model in the paper can be used to deal with the arbitrary thickness and any frequency of the coated layer in dynamic problem. The conclusions may be of theoretical reference to the application of damping material to noise and vibration control of submarines and underwater pipes.  相似文献   

9.
[Objectives] As a new type of pressure-resistant structure, the titanium alloy sandwich cylindrical shell has not yet been studied comprehensively. The topology of the core layer needs to be confirmed using the optimization method. This paper carries out the core topology optimization of titanium alloy pressure-resistant sandwich cylindrical shells.[methods]An unreinforced cylindrical shell with high thickness is selected as the analysis object, and the axisymmetric element is used to calculate the structural stresses via ANSYS. The cylindrical shell is divided into the upper, middle and lower regions along the thickness direction. The structures of the middle region are set as the design variables, and a two-stage topology optimization mathematical model of its core structure is proposed. Based on Matlab, the main control program of the genetic algorithm is established to carry out the core layout optimization of the unreinforced cylindrical shell along the axial direction only and both the axial direction and radial direction respectively.[results]The optimal core topological form consists of equidistant ribs connecting the inner shell and outer shell vertically.[Conclusions]A sandwich cylindrical shell under hydrostatic pressure is a reasonable pressure-resistant structure. © 2023 Authors. All rights reserved.  相似文献   

10.
[Objectives]As composite materials have varied internal structures, an in-depth analysis of the damage mechanisms of their component materials can provide a research foundation for the ultimate strength analysis of composite stiffened panels. [Methods]The microscopic, mesoscopic and macroscopic mechanical analyses of marine glass fiber reinforced plastic (GFRP) composite stiffened panels are carried out using a multi-scale approach. Microscopic and mesoscopic representative volume element (RVE) models of chopped strand mat (CSM) and woven roving (WR) materials are established, and the macroscopic equivalent stiffness is obtained by homogenizing the RVE models. The ABAQUS VUMAT subroutine is used to code the progressive damage evolution model of the composite materials to derive the damage evolution mechanism of the microscopic and mesoscopic models respectively. The equivalent strength of macroscopic laminates is also obtained. [Results]The multi-scale approach can be used to accurately evaluate the macroscopic mechanical properties of composite materials, and the ultimate strength of composite stiffened panels is mainly determined by fiber bundle failure. [Conclusions]The obtained macroscopic material parameters can be used to calculate the ultimate strength of composite stiffened panels, while the parametric study of the mesomechanics of composite materials can provide an analysis tool for investigating the influence of material processing technology. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

11.
The research on structural vibration and sound radiation of underwater ring-ribbed cylindrical shell, which is coated with a kind of deadening and decoupling materials, becomes a focus in recent years. This paper analyzes the problem on two aspects: model experiment and numerical calculation. The model experiment is carried out including three cases firstly, in which the structural vibration response and radiating acoustic field are measured respectively, and the results gained in these three cases are analyzed to discuss the effect of reducing structural vibration and radiating noise of the deadening and decoupling materials. The coupling FEM/BEM and the SEA methods are both used in numerical calculation, i.e. the arithmetic of the coupling FEM/BEM method is adopted to calculate the low frequency characteristics and the SEA method is adopted to calculate the medium-high frequencies characteristics of the model. By comparing experimental results with numerical calculation results, it is proved that the algorithm adopted in this paper is reasonable.  相似文献   

12.
In marine engine exhaust silencing systems, the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers. In order to investigate the effects of three-dimensional gas flow and acoustic damping on the acoustic attenuation characteristics of marine engine exhaust silencers, a dual reciprocity boundary element method (DRBEM) was developed. The acoustic governing equation in three-dimensional potential flow was derived first, and then the DRBEM numerical procedure is given. Compared to the conventional boundary element method (CBEM), the DRBEM considers the second order terms of flow Mach number in the acoustic governing equation, so it is suitable for the cases with higher Mach number subsonic flow. For complex exhaust silencers, it is difficult to apply the single-domain boundary element method, so a substructure approach based on the dual reciprocity boundary element method is presented. The experiments for measuring transmission loss of silencers are conducted, and the experimental setup and measurements are explained. The transmission loss of a single expansion chamber silencer with extended inlet and outlet were predicted by DRBEM and compared with the measurements. The good agreements between predictions and measurements are observed, which demonstrated that the derived acoustic governing equation and the DRBEM numerical procedure in the present study are correct.  相似文献   

13.
Underwater cylindrical shell structures have been found a wide of application in many engineering fields, such as the element of marine, oil platforms, etc. The coupled vibration analysis is a hot issue for these underwater structures. The vibration characteristics of underwater structures are influenced not only by hydrodynamic pressure but also by hydrostatic pressure corresponding to different water depths. In this study, an acoustic finite element method was used to evaluate the underwater structures. Taken the hydrostatic pressure into account in terms of initial stress stiffness, an acoustical fluid-structure coupled analysis of underwater cylindrical shells has been made to study the effect of hydrodynamic pressures on natural frequency and sound radiation. By comparing with the frequencies obtained by the acoustic finite element method and by the added mass method based on the Bessel function, the validity of present analysis was checked. Finally, test samples of the sound radiation of stiffened cylindrical shells were acquired by a harmonic acoustic analysis. The results showed that hydrostatic pressure plays an important role in determining a large submerged body motion, and the characteristics of sound radiation change with water depth. Furthermore, the analysis methods and the results are of significant reference value for studies of other complicated submarine structures.  相似文献   

14.
Using the plane-wave expansion (PWE) method , the band gaps of the two-dimension phononic crystals composed of square, triangle and honeycomb arrays aluminum cylinders in the air are calculated numerically. The band structures of three lattices were compared and analyzed. It is concluded that the band-gap of honeycomb lattices is located at lower frequency fields, compared with square and triangle lattices, When the filling fraction is between 0. 091 and 0. 604 6, the honeycomb lattices have larger band gaps and gain an advantage over square and triangle lattices. In addition, the gap map is introduced to illustrate the influences of filling fraction on the number, the relative width and the limit frequency of the band-gap.  相似文献   

15.
The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator(SSAS) developed based on optimization of the Helmholtz–Kirchhoff–Fresnel(HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS(MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall–Novarini model and optimized HKF method. The extended Hall–Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests(CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.  相似文献   

16.
[Objectives]It is easy to produce buckling distortion when welding thin plate butt joints, which affects the construction period, cost and performance, but this can be controlled by applying external restraints. [Methods ] First, a butt welding test of a thin plate under external restraints is carried out, and the out-of-plane deformation is measured by the optical surface scanning method. At the same time, finite element (FE) models in a free state and external restraint state are established, and the thermal mechanical phenomena of the two models are subjected to thermal-elastic-plastic FE analysis (TEP FE). The influence of different external restraint distributions on the welding buckling distortion of the joints is then studied, and reasons for controlling welding buckling distortion are analyzed from the perspective of longitudinal plastic strain and longitudinal contraction force.[Results ] The out-of-plane deformation of the corresponding model is in good agreement with the measured results, and milder than the out-of-plane deformation of the model in a free state. When external restraints are applied, the longitudinal plastic strain of the weld and its adjacent metal decreases, and the longitudinal contraction force of the thin plate also decreases.[Conclusions ] The results verify that external restraints can effectively control welding buckling distortion, and the control effects are different depending on the external restraint distribution. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

17.
Wave diffraction of two concentric porous cylinders with varying porosity was studied by using an analytical method based on eigenfunction matching.The fluid domain around the cylinders is divided into three sub-domains and in each sub-domain an eigenfunction expansion of the velocity potential is obtained by satisfying the Laplace equation,the boundary conditions on the free surface and on the sea bed.The unknown coefficients of eigenfunction expansions are determined by boundary conditions on the porous hulls.In the paper,the boundary conditions are based upon the assumption that the flow in the porous medium is governed by Darcy’s law.Two porous-effect parameters applied on two porous cylinders are functions of the vertical coordinate instead of the constant.Wave loading on the outer and inner cylinder is presented in the numerical results.  相似文献   

18.
In this paper, a hybrid automatic optimization strategy is proposed for the design of underwater robot lines. Isight is introduced as an integration platform. The construction of this platform is based on the user programming and several commercial software including UG6.0, GAMBIT2.4.6 and FLUENT12.0. An intelligent parameter optimization method, the particle swarm optimization, is incorporated into the platform. To verify the strategy proposed, a simulation is conducted on the underwater robot model 5470, which originates from the DTRC SUBOFF project. With the automatic optimization platform, the minimal resistance is taken as the optimization goal;the wet surface area as the constraint condition; the length of the fore-body, maximum body radius and after-body's minimum radius as the design variables. With the CFD calculation, the RANS equations and the standard turbulence model are used for direct numerical simulation. By analyses of the simulation results, it is concluded that the platform is of high efficiency and feasibility. Through the platform, a variety of schemes for the design of the lines are generated and the optimal solution is achieved. The combination of the intelligent optimization algorithm and the numerical simulation ensures a global optimal solution and improves the efficiency of the searching solutions.  相似文献   

19.
[Objective]To meet the efficient thermal management needs of electronic devices such as ships and underwater vehicles, this study focuses on the constructal design of a tree-shaped microchannel disc heat sink with wavy walls. [Method]A design prototype of the heat sink with wavy walls is first proposed. Based on constructal theory, the amplitude and wavelength of the wavy walls are designed under the constraints of fixed heat sink volume and fixed microchannel volume by maximizing the comprehensive performance evaluation criteria (PEC) while considering both heat transfer and flow pressure drop. [Results]The results show that the wavy walls increase the heat transfer surface areas and generate vortices in their cavities, effectively reducing the maximum temperature. When the inlet Reynolds number is fixed at 700, 900 or 1100 respectively, the maximum temperature is reduced by 13.5 K by increasing the amplitude of the wavy walls, while the pressure drop increases significantly; and the maximum temperature is reduced by 4.7 K by reducing the wavelength of the wavy walls, while the pressure drop increases slightly. There are optimal amplitudes that raise the comprehensive performance evaluation criteria to extreme values for given larger wavelengths, while the comprehensive performance evaluation criteria increase monotonously as the amplitude increases for given smaller wavelengths. [Conclusion]Wavy walls can significantly improve the thermal performance of tree-shaped microchannel disc heat sinks, and the use of constructal design can realize optimal geometric constructs with optimal comprehensive performance evaluation criteria. © 2023 Authors. All rights reserved.  相似文献   

20.
To research the effect of the selection method of multi-objects genetic algorithm problem on optimizing result, thismethod is analyzed theoretically and discussed by using an autonomous underwater vehicle(AUV) as an object. A changingweight vtlue method is put forward and a selection formula is modified. Some experiments were implemented on an AUV.TwinBurger. The results shows that this method is effective and feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号