首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Urban passenger transport significantly contributes to global greenhouse gas emissions, especially in developing countries owing to the rapid motorization, thus making it an important target for carbon reduction. This article established a method to estimate and analyze carbon emission from urban passenger transport including cars, rail transit, taxis and buses. The scope of research was defined based on car registration area, transport types and modes, the stages of rail transit energy consumption. The data availability and gathering were fully illustrated. A city level emission model for the aforementioned four modes of passenger transport was formulated, and parameters including emission factor of electricity and fuel efficiency were tailored according to local situations such as energy structure and field survey. The results reveal that the emission from Beijing’s urban passenger transport in 2012 stood at 15 million tonnes of CO2, of which 75.5% was from cars, whereas car trip sharing constitutes only 42.5% of the total residential trips. Bus travel, yielding 28.6 g CO2, is the most efficient mode of transport under the current situations in terms of per passenger kilometer (PKM) emission, whereas car or taxi trips emit more than 5 times that of bus trips. Although a decrease trend appears, Beijing still has potential for further carbon reduction in passenger transport field in contrast to other cities in developed countries. Development of rail transit and further limitation on cars could assist in reducing 4.39 million tonnes CO2 emission.  相似文献   

2.
NOX emission rates of 13 petrol and 3 diesel passenger cars as a function of average speed from 10 to 120 km/h, emission class (pre-Euro 1 – Euro 5), engine type were investigated by on-board monitoring on roads and highways of St. Petersburg using a portative Testo XXL 300 gas analyzer. The highest level of NOX emission 0.5–2.5 g/km was inherent to old pre-Euro 1 petrol cars without a catalytic converter. NOX emissions rates of Euro 1 and Euro 2 petrol cars changed within 0.15–0.9 g/km, Euro 3 – 0.015–0.27 g/km, Euro 4 – 0.013–0.1 g/km, Euro 5 – 0.002–0.043 g/km. Euro 3 – Euro 4 petrol cars generally satisfied corresponding NOX Emission Standards (ES), except cold-start period, Euro 5 petrol cars did not exceed ES. Warmed, stabilized engines of Euro 3 – Euro 5 petrol cars showed 5–10 times lower NOX emission rates than corresponding ES in the range of speed from 20 to 90 km/h. NOX emission rates of diesel Euro 3 and Euro 4 cars varied from 0.45 to 1.1 g/km and from 0.31 to 1.1 g/km, respectively. Two examined diesel Euro 3 and one Euro 4 passenger vehicles did not satisfy NOX ES at real use. Euro 3 diesel cars showed 28.9 times higher NOX emissions than Euro 3 petrol cars and Euro 4 diesel car demonstrated 17.6 times higher NOX emissions than Euro 4 petrol cars at warmed and stabilized engine at a cruise speed ranging from 30 to 60 km/h.  相似文献   

3.
4.
On average a person spends 1.1 h per day traveling and devotes a predictable fraction of income to travel. We show that these time and money budgets are stable over space and time and can be used for projecting future levels of mobility and transport mode. The fixed travel money budget requires that mobility rises nearly in proportion with income. Covering greater distances within the same fixed travel time budget requires that travelers shift to faster modes of transport. The choice of future transport modes is also constrained by path dependence because transport infrastructures change only slowly. In addition, demand for low-speed public transport is partially determined by urban population densities and land-use characteristics. We present a model that incorporates these constraints, which we use for projecting traffic volume and the share of the major motorized modes of transport—automobiles, buses, trains and high speed transport (mainly aircraft)—for 11 regions and the world through 2050. We project that by 2050 the average world citizen will travel as many kilometers as the average West European in 1990. The average American's mobility will rise by a factor of 2.6 by 2050, to 58,000 km/year. The average Indian travels 6000 km/year by 2050, comparable with West European levels in the early 1970s. Today, world citizens move 23 billion km in total; by 2050 that figure grows to 105 billion.  相似文献   

5.
Shunting locomotive/switcher (AmE)/utilization profiles are analyzed in this paper, in particular on the basis of idle time data collected in nineteen Polish industrial sidings and yards. 40 years old, diesel-electric locomotives are observed during 1000 h. Idle times related to work cycles are analyzed statistically. The percentage of the shunting locomotive daily operating time that the engine is operating at idle amounts to 70% (from 55% to 90%), and average daily idle fuels consumption amounts to 150 l a day (from 90 to 240 l a day).Many European and Asian countries still operate a significant number of similar (ChME3, e.g. S200) old, diesel-electric locomotives (almost 8000 locomotives have been produced), for moving trains over long distances and as shunting locomotives.Observed frequent short idle time periods suggest necessity of widening future scope of idling times’ analysis. Adaptation of Polish rolling stock will be possible using prior general public education about dangerous carcinogens in diesel exhaust smoke and fuel waste related to diesel engines’ idling. Simple simultaneous depiction of diesel engine power time series together with idle time could be used for educational visualization of idling among a wider audience. In the future classical aggregated idle time statistics should be supplemented by models that are more related to the variability of shunting locomotives diesel generator’s power time series, e.g. distribution of frequent short individual idle time cases.  相似文献   

6.
Battery electric vehicles (BEVs) could reduce CO2 emissions from the transport sector but their limited electric driving range diminishes their utility to users. The effect of the limited driving range can be reduced in multi-car households where users could choose between a BEV and a conventional car for long-distance travel. However, to what extent the driving patterns of different cars in a multi-car household’s suit the characteristics of a BEV needs further analysis. In this paper we analyse the probability of daily driving above a fixed threshold for conventional cars in current Swedish and German car driving data. We find second cars in multi-car households to require less adaptation and to be better suited for BEV adoption compared to first cars in multi-car households as well as to cars in single-car households. Specifically, the share of second cars that could fulfil all their driving is 20 percentage points higher compared to first cars and cars from single-car households. This result is stable against variation of driving range and of the tolerated number of days requiring adaptation. Furthermore, the range needed to cover all driving needs for about 70% of the vehicles is only 220 km for second cars compared to 390 km for the average car. We can further confirm that second cars have higher market viability from a total cost of ownership perspective. Here, the second cars achieve a 10 percentage points higher market share compared to first cars, and to cars in single-car households for Swedish economic conditions, while for Germany the corresponding figure is 2 percentage points. Our results are important for understanding the market viability of current and near-future BEVs.  相似文献   

7.
Accurate modelling of the health and environmental benefits of non-recreational transport cycling requires information about its effects on the use of other transport modes. Relevant research has not focussed on cycling for transport in a general context (as opposed to bikeshare), nor allowed for multi-modal trips. The influence of trip- and personal-characteristics on whether cycling replaces car-driving have yet to be considered. The present study aimed to address these research gaps. An on-line cross-sectional survey was completed by 1525 Australians who cycle for transport at least once per week. For the most recent trip completed (at least partly) by bicycle participants provided trip distance, and percentage travelled by car, public transport (PT), and walking. They also provided the percentage travelled by each mode for the same trip before taking up transport cycling; and a hypothetical future trip when riding is not possible. Compared to the same trip before, fifty percent of recent trips reduced car use, and around 1/3 eliminated a 100%-car trip. Reduced car use was significantly less likely for trips under 7.5 km, commuting, females, respondents under 55, and regular cyclists. Reduced car use was less likely for respondents who started riding because it is flexible, and more likely for those who started riding to avoid parking. Car-use was reduced by an average of 6.2 km per trip, and each bicycle-km cycled replaced 0.5 car-km. Participants report that since taking up cycling, even when they cannot use their bike, they use cars less and use PT more compared to before they took up cycling. Results suggest that previous studies underestimated the extent to which transport cycling replaces car travel, and highlights trip types and population groups to target with cycling promotion strategies. Information about the per-trip and per-bicycle-km replacement of car, PT and walking may be used for more accurate estimation of the benefits of transport cycling than has hitherto been possible.  相似文献   

8.
Little appears to be known about the capitalization of transportation accessibility in South Asian housing markets, which typically differ from those of industrialized countries. This study starts addressing this gap by providing empirical evidence about the nature and the magnitude of the value of accessibility as reflected by residential rents in Rajshahi City, Bangladesh. Results of our SARAR spatial hedonic model estimated on 526 observations from a random sample collected via in-person interviews indicate that the rent of a multi-unit dwelling decreases by 0.0239% for every 1% increase in network access distance to the nearest major road. Moreover, proximity (within 400 m) to a primary school and to a healthcare facility commands rent premiums of respectively 93.55 BDT ($1.40) and 109.45 BDT ($1.64). Surprisingly, whether access roads are paved or not does not statistically impact rents, probably because of the dominance of walking, rickshaws use, and biking, combined with the rarity of personal cars. Likewise, proximity to bus stops and to train stations is not reflected in rents of multi-family dwellings, likely because buses and trains in Rajshahi City only provide regional and national service. Differences in estimates of our spatial models between maximum likelihood (ML) and generalized spatial two-stage-least-squares illustrate the danger of relying on ML in the presence of heteroskedasticity. These results should be useful for planning transportation infrastructure funding measures in least developed country cities like Rajshahi City.  相似文献   

9.
Biodiesel use in local public transport could be especially significant in improving air quality in cities. The purpose of the experiments described in this paper was to evaluate the various (10, 20 and 50%) blends of biodiesel with diesel in the context of the engine and pollution aspects. As regards the experimental use of these findings on municipal buses, these experiments were the first reference in Hungary. The ages (15–20 years) and types of buses (Ikarus-280, Ikarus-260) used in the experiments are still common vehicles in Hungarian public transport. During our measurements, there was a significant difference between the change in fuel consumption of articulated and solo buses in traffic when compared to test bench measurements. The proportion of the engine performance reduction is nearly the same as that for biodiesel share in the blends. Most pollutants were decreasing (both at idle and full rpm), but this reduction is not directly proportional to the increase of the blending percentage. However, as for CO2, emission increase was observed in the case of idle rpm in comparison to normal diesel operation, even though this phenomenon was not due to biodiesel use, but the catalytic converter and the fact that biodiesel was used for the first time in the engine concerned.  相似文献   

10.
In this study, diesel (JIS#2) and various biodiesel fuels (BDF20, BDF50, BDF100) are used to operate the diesel engine at 100 Nm, 200 Nm and full load; while the engine speed is 1800 rpm. The system is experimentally studied, and the energy, exergy, sustainability, thermoeconomic and exergoeconomic analyses are performed to the system. The Engine Exhaust Particle Sizer is used to measure the size distribution of engine exhaust particle emissions. Also, the data of the exhaust emissions, soot, particle numbers, fuel consumptions, etc. are measured. It is found that (i) most of the exhaust emissions (except NOx) are directly proportional to the engine load, (ii) maximum CO2 and NOx emissions rates are generally determined for the BDF100 biodiesel fuel; while the minimum ones are calculated for the JIS#2 diesel fuel. On the other hand, the maximum CO and HC emissions rates are generally computed for the JIS#2 diesel fuel; while the minimum ones are found for the BDF100 biodiesel fuel, (iii) fuel consumptions from maximum to minimum are BDF100 > BDF50 > BDF20 > JIS#2 at all of the engine loads, (iv) particle concentration of the JIS#2 diesel fuel is higher than the biodiesel fuels, (v) soot concentrations of the JIS#2, BDF20 and BDF50 fuels are directly proportional to the engine load; while the BDF100 is inversely proportional, (vi) system has better energy and exergy efficiency when the engine is operated with the biodiesel fuels (vii) sustainability of the fuels are BDF100 > BDF50 > BDF20 > JIS#2, (viii) thermoeconomic and exergoeconomic parameters rates from maximum to minimum are JIS#2 > BDF20 > BDF50 > BDF100.  相似文献   

11.
12.
This paper applies a life cycle methodology to estimate activity-related contributions of transport modes to GHG emissions. The methodology uses national input–output tables, environmental accounts, household budget data and nutritional data to derive food-sector GHG coefficients of consumption for ten European countries. The food energy requirements for each mode of transport are estimated taking account of the modal activity level and energy requirements. Typical national food energy-related emissions for walking, cycling, and driving ranged from 25.6 to 77.3 gCO2-eq/pass.km, 10.4–31.4 gCO2-eq/pass.km and 1.7–5.2 gCO2-eq/pass.km; passenger transport was found to result in no food-related emissions above those for a resting individual. Emissions vary between countries depending on the emissions intensities of their energy sectors as well as food prices and average body weights. A life cycle assessment of modal emissions in the UK is undertaken using the food-energy emissions intensities estimated and car travel was found to have the highest emissions intensity, followed by bus, cycling and walking.  相似文献   

13.
People’s daily decision to use car-sharing rather than other transport modes for conducting a specific activity has been investigated recently in assessing the market potential of car-sharing systems. Most studies have estimated transport mode choice models with an extended choice set using attributes such as average travel time and costs. However, car-sharing systems have some distinctive features: users have to reserve a car in advance and pay time-based costs for using the car. Therefore, the effects of activity-travel context and travel time uncertainty require further consideration in models that predict car-sharing demand. Moreover, the relationships between individual latent attitudes and the intention to use car-sharing have not yet been investigated in much detail. In contributing to the research on car-sharing, the present study is designed to examine the effects of activity-travel context and individual latent attitudes on short-term car-sharing decisions under travel time uncertainty. The effects of all these factors were simultaneously estimated using a hybrid choice modeling framework. The data used in this study was collected in the Netherlands, 2015 using a stated choice experiment. Hypothetical choice situations were designed to collect respondents’ intention to use a shared-car for their travel to work. A total of 791 respondents completed the experiment. The estimation results suggest that time constraints, lack of spontaneity and a larger variation in travel times have significant negative effects on people’s intention to use a shared-car. Furthermore, this intention is significantly associated with latent attitudes about pro-environmental preferences, the symbolic value of cars, and privacy-seeking.  相似文献   

14.
Electrification is widely considered as a viable strategy for reducing the oil dependency and environmental impacts of road transportation. In pursuit of this strategy, most attention has been paid to electric cars. However, substantial, yet untapped, potentials could be realized in urban areas through the large-scale introduction of electric two-wheelers. Here, we review the environmental, economic, and social performance of electric two-wheelers, demonstrating that these are generally more energy efficient and less polluting than conventionally-powered motor vehicles. Electric two-wheelers tend to decrease exposure to pollution as their environmental impacts largely result from vehicle production and electricity generation outside of urban areas. Our analysis suggests that the price of e-bikes has been decreasing at a learning rate of 8%. Despite price differentials of 5000 ± 1800 EUR2012 kW h−1 in Europe, e-bikes are penetrating the market because they appear to offer an apparent additional use value relative to bicycles. Mid-size and large electric two-wheelers do not offer such an additional use value compared to their conventional counterparts and constitute niche products at price differentials of 700 ± 360 EUR2012 kW−1 and 160 ± 90 EUR2012 kW−1, respectively. The large-scale adoption of electric two-wheelers can reduce traffic noise and road congestion but may necessitate adaptations of urban infrastructure and safety regulations. A case-specific assessment as part of an integrated urban mobility planning that accounts, e.g., for the local electricity mix, infrastructure characteristics, and mode-shift behavior, should be conducted before drawing conclusions about the sustainability impacts of electric two-wheelers.  相似文献   

15.
The Harbor Maintenance Tax is a fundamentally flawed maintenance funding mechanism for the critical US port system. Three alternatives were analyzed. User fee rates were estimated for either a national or regional tonnage based fee. Our results indicate that maintenance cost recovering regional fees could vary widely from about 10 cents per tonne to nearly 80 cents per tonne. A national rate would be about 30 cents per tonne. The large regional differences and affects on bulk shippers are likely to make implementing and maintaining cost recovering tonnage based fees infeasible. Two other mechanisms are considered. One possibility is to abolish the HMT without a replacement mechanism. The obvious strength of this approach is its simplicity, the weaknesses is that it is not budget neutral. Another possibility is to increase the federal diesel tax rate. One strength of the approach is the reasonable rate increase required to recover port maintenance costs (estimated between 0.278 and 0.315 cents per liter). An additional strength is that relatively inefficient fuel users will either make the largest share of the additional payments or the freight will shift modes to one that is more efficient. One weakness is that the rate has been unchanged since 1997, this points to the political difficulty involved in passing such a rate increase.  相似文献   

16.
Vehicles are considered to be an important source of ammonia (NH3) and isocyanic acid (HNCO). HNCO and NH3 have been shown to be toxic compounds. Moreover, NH3 is also a precursor in the formation of atmospheric secondary aerosols. For that reason, real-time vehicular emissions from a series of Euro 5 and Euro 6 light-duty vehicles, including spark ignition (gasoline and flex-fuel), compression ignition (diesel) and a plug-in electric hybrid, were investigated at 23 and −7 °C over the new World harmonized Light-duty vehicle Test Cycle (WLTC) in the Vehicle Emission Laboratory at the European Commission Joint Research Centre Ispra, Italy. The median HNCO emissions obtained for the studied fleet over the WLTC were 1.4 mg km−1 at 23 °C and 6 mg km−1 at −7 °C. The fleet median NH3 emission factors were 10 mg km−1 and 21 mg km−1 at 23 and −7 °C, respectively. The obtained results show that even though three-way catalyst (TWC), selective catalytic reduction (SCR), and NOx storage catalyst (NSC) are effective systems to reduce NOx vehicular emissions, they also lead to considerable emissions of the byproducts NH3 and/or HNCO. It is also shown that diesel light-duty vehicles equipped with SCR can present NH3 emission factors as high as gasoline light-duty vehicles at both, 23 and −7 °C over the WLTC. Therefore, with the introduction in the market of this DeNOx technology, vehicular NH3 emissions will increase further.  相似文献   

17.
This paper explores the experimental investigation of the performance, emission and combustion characteristics of bio fuels from ceiba pentandra methyl ester (CPME), ceiba pentandra methyl ester-pine oil blends (CPMEP) and pine oil and the results are compared with diesel. In ceiba pentandra seed oil the CPME yield is 92% by using transesterification process with the optimum conditions of 560 rpm, reaction time 58 min, catalyst concentration 13 g and methanol amount 500 ml. The viscosity of CPME is high when compare with diesel. So the low viscosity of pine oil is blended with CPME and it can be directly used in diesel engine without any modification. At different loads the Pine oil, CPME and CPMEP blends were used in direct injection naturally aspirated compression ignition engine. The outcomes exhibited that at full load conditions for CPME and CPMEP blends increased brake specific fuel consumption, and decreased brake thermal efficiency, CO, HC emissions. NOx emissions decreased and smoke emissions are increased on CPME and CPMEP blends, expect B25 blend compared with diesel. The combustion analysis like the heat release rate, peak cylinder pressure, cumulative heat release rate and ignition delay for CPME, CPMEP blends slightly lower and combustion duration higher than diesel and pine oil. At the Same engine operating condition, the engine fuelled with pine oil the values of brake thermal efficiency 4.79%, peak cylinder pressure, heat release rate, cumulative heat release rate and ignition delay are increased. Brake specific fuel consumption, CO, HC, and smoke were 9.46%, 16.66%, 14.89% and 8.33% decreased. However, the NOx emission is 8.29% higher than that of diesel. Experimental fuels up to B50 (50% pine oil and 50% CPME) blends have proved good potential for future energy is needed.  相似文献   

18.
CO, CO2, NOx and HC emissions of two stroke-powered tricycles in Metro Manila are examined using an instantaneous emissions model. Results show that fuel consumption and HC emissions in middle class residential areas and main roads are similar but lower than levels in low income residential areas. On the average, tricycles in Metro Manila consume 24.41 km/l of fuel and produces 9.5, 9.7, 40.5 and 0.07 g/km of HC, CO, CO2 and NOx, respectively. They fail to satisfy HC, CO and NOx emission limits set by reference standards in the Philippines and other Asian countries. They produce greater HC and CO emissions than gasoline fueled private cars and diesel powered public jeepneys, taxis and buses on a per passenger-km basis but significantly lower NOx emissions. Tricycles account for 15.4% of the total HC emissions from mobile sources in the metropolis while their contributions to CO, CO2 and NOx are minimal.  相似文献   

19.
The paper intends to analyse the different attitudes of residents in urban areas in regard to annoyance induced by traffic noise, account taken of the effects of the street configuration and of the presence of specific public transport modes in the definition of the dose-response curves.People’s annoyance was investigated through a campaign of noise and traffic measurements and an epidemiological survey, administered to a sample of 830 residents in the buildings close to the measurement points.An ordinal regression model taking into account environmental and urban characteristics was used to identify a dose-response relationship. The cumulative probabilities allowed to define two cut points on the dose-response curves (60 and 75 dB(A)), grouping people in three classes and making the representation of the dose-response relationships different from those traditionally defined that use only the percentage of highly annoyed people.The results show different people’s attitudes towards the annoyance in the urban sites while the dose-response relationship shows that the correlation between annoyance and noise is low. For the same value of day equivalent level, 10% more people are annoyed in L sections (broad streets) than in U sections (narrow streets). Furthermore, all the dose-response curves show a higher sensitivity of people living in L sections; this difference can be measured as a shift of about 4 dB(A). Noise levels are, arguably, a useful indicator, but they are not reliable enough to define the discomfort of the residents, while the site characteristics could shed light on annoyance variability.  相似文献   

20.
Among the natural hazards that threaten transportation infrastructure, flooding represents a major hazard to highways as it challenges their design, operation, efficiency and safety. In extreme cases, it may lead to massive obstruction of traffic and direct damages to the road structures themselves and indirect damages to the economic activity and development of the region. To enable the prevention of such consequences, and the proposition of adaptive measures for existing infrastructure, this paper presents an integrated framework to identify the most vulnerable points to flooding along a highway. This is done through the combination of remote sensing information (e.g. LiDAR based Digital Elevation Model, satellite imagery), a high-quality dataset, and a quasi-2D hydrodynamic model. The forcing condition is defined using a hyetograph associated to a storm with duration of 1 day and return period of 100 years. The selected highway is located in the Mexican state of Tabasco, where extreme precipitation events and floods are frequent. Results demonstrate the ability of the methodology to identify critical water levels along the road (h > 1.50 m) at those locations where flooding has been experienced, as well as points of inspection for the highway drainage. These locations were visited in the field and maintenance problems were detected that do increase its level of exposure. We show that this framework is useful for the generation of a flood management strategy to the analyzed highway, which includes an optimum location of adaptive measures to an anticipated more intense future climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号