首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrification is widely considered as a viable strategy for reducing the oil dependency and environmental impacts of road transportation. In pursuit of this strategy, most attention has been paid to electric cars. However, substantial, yet untapped, potentials could be realized in urban areas through the large-scale introduction of electric two-wheelers. Here, we review the environmental, economic, and social performance of electric two-wheelers, demonstrating that these are generally more energy efficient and less polluting than conventionally-powered motor vehicles. Electric two-wheelers tend to decrease exposure to pollution as their environmental impacts largely result from vehicle production and electricity generation outside of urban areas. Our analysis suggests that the price of e-bikes has been decreasing at a learning rate of 8%. Despite price differentials of 5000 ± 1800 EUR2012 kW h−1 in Europe, e-bikes are penetrating the market because they appear to offer an apparent additional use value relative to bicycles. Mid-size and large electric two-wheelers do not offer such an additional use value compared to their conventional counterparts and constitute niche products at price differentials of 700 ± 360 EUR2012 kW−1 and 160 ± 90 EUR2012 kW−1, respectively. The large-scale adoption of electric two-wheelers can reduce traffic noise and road congestion but may necessitate adaptations of urban infrastructure and safety regulations. A case-specific assessment as part of an integrated urban mobility planning that accounts, e.g., for the local electricity mix, infrastructure characteristics, and mode-shift behavior, should be conducted before drawing conclusions about the sustainability impacts of electric two-wheelers.  相似文献   

2.
NOX emission rates of 13 petrol and 3 diesel passenger cars as a function of average speed from 10 to 120 km/h, emission class (pre-Euro 1 – Euro 5), engine type were investigated by on-board monitoring on roads and highways of St. Petersburg using a portative Testo XXL 300 gas analyzer. The highest level of NOX emission 0.5–2.5 g/km was inherent to old pre-Euro 1 petrol cars without a catalytic converter. NOX emissions rates of Euro 1 and Euro 2 petrol cars changed within 0.15–0.9 g/km, Euro 3 – 0.015–0.27 g/km, Euro 4 – 0.013–0.1 g/km, Euro 5 – 0.002–0.043 g/km. Euro 3 – Euro 4 petrol cars generally satisfied corresponding NOX Emission Standards (ES), except cold-start period, Euro 5 petrol cars did not exceed ES. Warmed, stabilized engines of Euro 3 – Euro 5 petrol cars showed 5–10 times lower NOX emission rates than corresponding ES in the range of speed from 20 to 90 km/h. NOX emission rates of diesel Euro 3 and Euro 4 cars varied from 0.45 to 1.1 g/km and from 0.31 to 1.1 g/km, respectively. Two examined diesel Euro 3 and one Euro 4 passenger vehicles did not satisfy NOX ES at real use. Euro 3 diesel cars showed 28.9 times higher NOX emissions than Euro 3 petrol cars and Euro 4 diesel car demonstrated 17.6 times higher NOX emissions than Euro 4 petrol cars at warmed and stabilized engine at a cruise speed ranging from 30 to 60 km/h.  相似文献   

3.
Commercial passenger cars are a possible early market segment for plug-in electric vehicles (PEVs). Compared to privately owned vehicles, the commercial vehicle segment is characterized by higher mileage and a higher share of vehicle sales in Germany. To this point, there are only few studies which analyze the commercial passenger car sector and arrive at contradictory results due to insufficient driving profile data with an observation period of only one day. Here, we calculate the market potential of PEVs for the German commercial passenger car sector by determining the technical and economical potential for PEVs in 2020 from multi-day driving profiles. We find that commercial vehicles are better suited for PEVs than private ones since they show higher average annual mileage and drive more regularly. About 87% of the analyzed three-week vehicle profiles can technically be fulfilled by battery electric vehicles (BEVs) with an electric driving range of about 110 km while plug-in hybrid electric vehicles (PHEVs) with an electric range of 40 km could obtain an electric driving share of 60% on average. In moderate energy price scenarios, PEVs can reach a market share of 2–4% in the German commercial passenger car sales by 2020 and especially the large commercial branches (Trade, Manufacturing, Administrative services and Other services) are important. However, our analysis shows a high sensitivity of results to energy and battery prices as well as electric consumptions.  相似文献   

4.
The well-to-wheel emissions associated with plug-in electric vehicles (PEVs) depend on the source of electricity and the current non-vehicle demand on the grid, thus must be evaluated via an integrated systems approach. We present a network-based dispatch model for the California electricity grid consisting of interconnected sub-regions to evaluate the impact of growing PEV demand on the existing power grid infrastructure system and energy resources. This model, built on a linear optimization framework, simultaneously considers spatiality and temporal dynamics of energy demand and supply. It was successfully benchmarked against historical data, and used to determine the regional impacts of several PEV charging profiles on the current electricity network. Average electricity carbon intensities for PEV charging range from 244 to 391 gCO2e/kW h and marginal values range from 418 to 499 gCO2e/kW h.  相似文献   

5.
Recent years have seen a renewed interest in Variable Speed Limit (VSL) strategies. New opportunities for VSL as a freeway metering mechanism or a homogenization scheme to reduce speed differences and lane changing maneuvers are being explored. This paper examines both the macroscopic and microscopic effects of different speed limits on a traffic stream, especially when adopting low speed limits. To that end, data from a VSL experiment carried out on a freeway in Spain are used. Data include vehicle counts, speeds and occupancy per lane, as well as lane changing rates for three days, each with a different fixed speed limit (80 km/h, 60 km/h, and 40 km/h). Results reveal some of the mechanisms through which VSL affects traffic performance, specifically the flow and speed distribution across lanes, as well as the ensuing lane changing maneuvers. It is confirmed that the lower the speed limit, the higher the occupancy to achieve a given flow. This result has been observed even for relatively high flows and low speed limits. For instance, a stable flow of 1942 veh/h/lane has been measured with the 40 km/h speed limit in force. The corresponding occupancy was 33%, doubling the typical occupancy for this flow in the absence of speed limits. This means that VSL strategies aiming to restrict the mainline flow on a freeway by using low speed limits will need to be applied carefully, avoiding conditions as the ones presented here, where speed limits have a reduced ability to limit flows. On the other hand, VSL strategies trying to get the most from the increased vehicle storage capacity of freeways under low speed limits might be rather promising. Additionally, results show that lower speed limits increase the speed differences across lanes for moderate demands. This, in turn, also increases the lane changing rate. This means that VSL strategies aiming to homogenize traffic and reduce lane changing activity might not be successful when adopting such low speed limits. In contrast, lower speed limits widen the range of flows under uniform lane flow distributions, so that, even for moderate to low demands, the under-utilization of any lane is avoided. These findings are useful for the development of better traffic models that are able to emulate these effects. Moreover, they are crucial for the implementation and assessment of VSL strategies and other traffic control algorithms.  相似文献   

6.
Electric bicycles and motorcycles have emerged as a possible way of improving the transportation system sustainability. This work’s aim was to quantify the energy consumption, the trip travel and the driving dynamics on specific routes in Lisbon, Portugal. Six electric and conventional bicycles and motorcycles were monitored, and a methodology to quantify the power required in each driving second was developed: Motorcycle and Bicycle Specific Power (MSP and BSP respectively). MSP and BSP allows characterizing energy consumption rates based on on-road data and to define real-world operation patterns (driving power distribution), as well as to benchmark the different propulsion technologies under the same baseline of specific power. For negative MSP and BSP modes, the conventional and the electric motorcycles and bicycles demonstrated a similar pattern. However, their behavior was different for positive modes, since electric technologies allow reaching higher power conditions. The methodology developed estimates accurately the energy consumption (average deviation of −0.19 ± 6.76% for motorcycles and of 1.41 ± 8.91% for bicycles). The MSP and BSP methodologies were tested in 2 Lisbon routes. For the electric motorcycle an increase in trip time (+36%) was observed when compared to the conventional one, while for the electric bicycle a 9.5% decrease was verified when compared to the conventional one. The Tank-to-Wheel (TTW) energy consumption for motorcycles was reduced by 61% when shifting to electric mobility, while a 30% Well-to-Wheel (WTW) reduction is obtained. For the electric bicycles, an additional energy use is quantified due to the battery electricity consumption.  相似文献   

7.
Shunting locomotive/switcher (AmE)/utilization profiles are analyzed in this paper, in particular on the basis of idle time data collected in nineteen Polish industrial sidings and yards. 40 years old, diesel-electric locomotives are observed during 1000 h. Idle times related to work cycles are analyzed statistically. The percentage of the shunting locomotive daily operating time that the engine is operating at idle amounts to 70% (from 55% to 90%), and average daily idle fuels consumption amounts to 150 l a day (from 90 to 240 l a day).Many European and Asian countries still operate a significant number of similar (ChME3, e.g. S200) old, diesel-electric locomotives (almost 8000 locomotives have been produced), for moving trains over long distances and as shunting locomotives.Observed frequent short idle time periods suggest necessity of widening future scope of idling times’ analysis. Adaptation of Polish rolling stock will be possible using prior general public education about dangerous carcinogens in diesel exhaust smoke and fuel waste related to diesel engines’ idling. Simple simultaneous depiction of diesel engine power time series together with idle time could be used for educational visualization of idling among a wider audience. In the future classical aggregated idle time statistics should be supplemented by models that are more related to the variability of shunting locomotives diesel generator’s power time series, e.g. distribution of frequent short individual idle time cases.  相似文献   

8.
Vehicles are considered to be an important source of ammonia (NH3) and isocyanic acid (HNCO). HNCO and NH3 have been shown to be toxic compounds. Moreover, NH3 is also a precursor in the formation of atmospheric secondary aerosols. For that reason, real-time vehicular emissions from a series of Euro 5 and Euro 6 light-duty vehicles, including spark ignition (gasoline and flex-fuel), compression ignition (diesel) and a plug-in electric hybrid, were investigated at 23 and −7 °C over the new World harmonized Light-duty vehicle Test Cycle (WLTC) in the Vehicle Emission Laboratory at the European Commission Joint Research Centre Ispra, Italy. The median HNCO emissions obtained for the studied fleet over the WLTC were 1.4 mg km−1 at 23 °C and 6 mg km−1 at −7 °C. The fleet median NH3 emission factors were 10 mg km−1 and 21 mg km−1 at 23 and −7 °C, respectively. The obtained results show that even though three-way catalyst (TWC), selective catalytic reduction (SCR), and NOx storage catalyst (NSC) are effective systems to reduce NOx vehicular emissions, they also lead to considerable emissions of the byproducts NH3 and/or HNCO. It is also shown that diesel light-duty vehicles equipped with SCR can present NH3 emission factors as high as gasoline light-duty vehicles at both, 23 and −7 °C over the WLTC. Therefore, with the introduction in the market of this DeNOx technology, vehicular NH3 emissions will increase further.  相似文献   

9.
This paper presents the characterization of air quality monitored at near field region (NFR) and far field region (FFR) of a national highway located at an industrial complex. The pollutants such as PM10, SO2 and NO2 were monitored in two campaigns (11th September to 18th October 2012 and 18th January to 17th February 2013). The 24 h average PM10 concentration at NFR and FFR were found to be 86.69 ± 18.56 μg/m3; 73.16 ± 16.21 μg/m3 and 89.44 ± 18.69 μg/m3; 81.91 ± 16.42 μg/m3, respectively during first and second campaign. In both the campaigns PM10, SO2 and NO2 concentration at NFR was higher than FFR. The chemical characterization of PM10 at NFR and FFR indicated the abundance of major elements such as Na (NFR = 30% and FFR = 32%), Ca (NFR = 12% and FFR = 14%) and ions namely NO3 (NFR = 71% and FFR = 68%) and NH3+ (NFR = 15% and FFR = 19%). Further, at FFR, SO42 and NO3 were found to be 18% and 35% higher than NFR indicating the conversions of SO2 and NO2 concentration into secondary particles. The measured SO2 and NO2 concentrations were 23 and 21% lower at FFR when compared to NFR confirms the secondary formation.The CALPUFF, EPA regulatory model was set up to understand the dynamics of air pollutants at the industrial complex. The predicted PM10, SO2 and NO2 concentrations at NFR and FFR were found to be 32.31 ± 1.56 μg/m3 and 31.35 ± 1.27 μg/m3; 0.37 ± 0.21 μg/m3 and 0.06 ± 0.04 μg/m3; 12.83 ± 6.55 μg/m3 and 4.67 ± 2.77 μg/m3, respectively. The model showed moderate predictions for PM10 (R2 = 0.44–0.52), SO2 (R2 = 0.41–0.51) and NO2 (R2 = 0.45–0.61) concentrations.  相似文献   

10.
Urban passenger transport significantly contributes to global greenhouse gas emissions, especially in developing countries owing to the rapid motorization, thus making it an important target for carbon reduction. This article established a method to estimate and analyze carbon emission from urban passenger transport including cars, rail transit, taxis and buses. The scope of research was defined based on car registration area, transport types and modes, the stages of rail transit energy consumption. The data availability and gathering were fully illustrated. A city level emission model for the aforementioned four modes of passenger transport was formulated, and parameters including emission factor of electricity and fuel efficiency were tailored according to local situations such as energy structure and field survey. The results reveal that the emission from Beijing’s urban passenger transport in 2012 stood at 15 million tonnes of CO2, of which 75.5% was from cars, whereas car trip sharing constitutes only 42.5% of the total residential trips. Bus travel, yielding 28.6 g CO2, is the most efficient mode of transport under the current situations in terms of per passenger kilometer (PKM) emission, whereas car or taxi trips emit more than 5 times that of bus trips. Although a decrease trend appears, Beijing still has potential for further carbon reduction in passenger transport field in contrast to other cities in developed countries. Development of rail transit and further limitation on cars could assist in reducing 4.39 million tonnes CO2 emission.  相似文献   

11.
This research evaluated the potential for wireless dynamic charging (charging while moving) to address range and recharge issues of modern electric vehicles by considering travel to regional destinations in California. A 200-mile electric vehicle with a real range of 160 miles plus 40 miles reserve was assumed to be used by consumers in concert with static and dynamic charging as a strict substitute for gasoline vehicle travel. Different combinations of wireless charging power (20–120 kW) and vehicle range (100–300 miles) were evaluated. One of the results highlighted in the research indicated that travel between popular destinations could be accomplished with a 200-mile EV and a 40 kW dynamic wireless charging system at a cost of about $2.5 billion. System cost for a 200-mile EV could be reduced to less than $1 billion if wireless vehicle charging power levels were increased to 100 kW or greater. For vehicles consuming 138 kWh of dynamic energy per year on a 40 kW dynamic system, the capital cost of $2.5 billion plus yearly energy costs could be recouped over a 20-year period at an average cost to each vehicle owner of $512 per year at a volume of 300,000 vehicles or $168 per year at a volume of 1,000,000 vehicles. Cost comparisons of dynamic charging, increased battery capacity, and gasoline refueling were presented. Dynamic charging, coupled with strategic wayside static charging, was shown to be more cost effective to the consumer over a 10-year period than gasoline refueling at $2.50 or $4.00 per gallon. Notably, even at very low battery prices of $100 per kWh, the research showed that dynamic charging can be a more cost effective approach to extending range than increasing battery capacity.  相似文献   

12.
The transportation sector faces increasing challenges related to energy consumption and local and global emissions profiles. Thus, alternative vehicle technologies and energy pathways are being considered in order to overturn this trend and electric mobility is considered one adequate possibility towards a more sustainable transportation sector.In this sense, this research work consisted on the development of a methodology to assess the economic feasibility of deploying EV charging stations (Park-EV) by quantifying the tradeoff between economic and energy/environmental impacts for EV parking spaces deployment. This methodology was applied to 4 different cities (Lisbon, Madrid, Minneapolis and Manhattan), by evaluating the influence of parking premium, infrastructure cost and occupancy rates on the investment Net Present Value (NPV). The main findings are that the maximization of the premium and the minimization of the equipment cost lead to higher NPV results. The NPV break-even for the cities considered is more “easily” reached for higher parking prices, namely in the case of Manhattan with the higher parking price profile. In terms of evaluating occupancy rates of the EV parking spaces, shifting from a low usage (LU) to a high usage (HU) scenario represented a reduction in the premium to obtain a NPV = 0 of approximately 14% for a 2500 € equipment cost, and, in the case of a zero equipment cost (e.g. financed by the city), a NPV = 0 was obtained with approximately a 2% reduction in the parking premium. Moreover, due to the use of electric mobility instead of the average conventional technologies, Well-to-Wheel (WTW) gains for Lisbon, Madrid, Minneapolis and Manhattan were estimated in 58%, 53%, 52% and 75% for energy consumption and 66%, 75%, 62% and 86% for CO2 emissions, respectively.This research confirms that the success of deploying an EV charging stations infrastructure will be highly dependent on the price the user will have to pay, on the cost of the infrastructure deployed and on the adhesion of the EV users to this kind of infrastructure. These variables are not independent and, consequently, the coordination of public policies and private interest must be promoted in order to reach an optimal solution that does not result in prohibitive costs for the users.  相似文献   

13.
In 2008 the regional government of Catalonia (Spain) reduced the maximum speed limit on several stretches of congested urban motorway in the Barcelona metropolitan area to 80 km/h, while in 2009 it introduced a variable speed system on other stretches of its metropolitan motorways. We use the differences-in-differences method, which enables a policy impact to be measured under specific conditions, to assess the impact of these policies on emissions of NOx and PM10. Empirical estimation indicate that reducing the speed limit to 80 km/h causes a 1.7–3.2% increase in NOx and 5.3–5.9% in PM10. By contrast, the variable speed policy reduced NOx and PM10 pollution by 7.7–17.1% and 14.5–17.3%. As such, a variable speed policy appears to be a more effective environmental policy than reducing the speed limit to a maximum of 80 km/h.  相似文献   

14.
We construct consumer-informed estimates of residential access to vehicle charging to guide understanding of plug-in electric vehicle demand, use, and energy impacts. Using a web-based survey, study 1 estimates that about half of new car-buying US households park at least one vehicle within 25 ft of a Level 1 (110/120 V) electrical outlet at home. Study 2 estimates that just under one-third of new car-buying households in San Diego County have access to Level 2 (220/240 V) charging. Further, 20% of the sample are both able and willing to install Level 2 PEV recharging infrastructure at the prices examined.  相似文献   

15.
On-board real-time emission experiments were conducted on 78 light-duty vehicles in Bogota. Direct emissions of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and hydrocarbons (HC) were measured. The relationship between such emissions and vehicle specific power (VSP) was established. The experimental matrix included both gasoline-powered and retrofit dual fuel (gasoline–natural gas) vehicles. The results confirm that VSP is an appropriate metric to obtain correlations between driving patterns and air pollutant emissions. Ninety-five percent of the time vehicles in Bogota operate in a VSP between −15.2 and 17.7 kW ton−1, and 50% of the time they operate between −2.9 and 1.2 kW ton−1, representing low engine-load and near-idling conditions, respectively. When engines are subjected to higher loads, pollutant emissions increase significantly. This demonstrates the relevance of reviewing smog check programs and command-and-control measures in Latin America, which are widely based on static (i.e., idling) emissions testing. The effect of different driving patterns on the city’s emissions inventory was determined using VSP and numerical simulations. For example, improving vehicle flow and reducing sudden and frequent accelerations could curb annual emissions in Bogota by up to 12% for CO2, 13% for CO and HC, and 24% for NOx. This also represents possible fuel consumption savings of between 35 and 85 million gallons per year and total potential economic benefits of up to 1400 million dollars per year.  相似文献   

16.
Two speed management policies were implemented in the metropolitan area of Barcelona aimed at reducing air pollution concentration levels. In 2008, the maximum speed limit was reduced to 80 km/h and, in 2009, a variable speed system was introduced on some metropolitan motorways. This paper evaluates whether such policies have been successful in promoting cleaner air, not only in terms of average pollutant levels but also during high and low pollution episodes. To do so, we use a quantile regression approach for fixed effect panel data, which allows us analyzing different scenarios (beyond the average levels). We find that the variable speed system improves air quality with regard to the two pollutants considered here, being most effective when nitrogen oxide levels are not too low and when particulate matter concentrations are below extremely high levels. However, reducing the maximum speed limit from 120/100 km/h to 80 km/h has no effect – or even a slightly increasing effect – on the two pollutants, depending on the pollution scenario.  相似文献   

17.
In this study, diesel (JIS#2) and various biodiesel fuels (BDF20, BDF50, BDF100) are used to operate the diesel engine at 100 Nm, 200 Nm and full load; while the engine speed is 1800 rpm. The system is experimentally studied, and the energy, exergy, sustainability, thermoeconomic and exergoeconomic analyses are performed to the system. The Engine Exhaust Particle Sizer is used to measure the size distribution of engine exhaust particle emissions. Also, the data of the exhaust emissions, soot, particle numbers, fuel consumptions, etc. are measured. It is found that (i) most of the exhaust emissions (except NOx) are directly proportional to the engine load, (ii) maximum CO2 and NOx emissions rates are generally determined for the BDF100 biodiesel fuel; while the minimum ones are calculated for the JIS#2 diesel fuel. On the other hand, the maximum CO and HC emissions rates are generally computed for the JIS#2 diesel fuel; while the minimum ones are found for the BDF100 biodiesel fuel, (iii) fuel consumptions from maximum to minimum are BDF100 > BDF50 > BDF20 > JIS#2 at all of the engine loads, (iv) particle concentration of the JIS#2 diesel fuel is higher than the biodiesel fuels, (v) soot concentrations of the JIS#2, BDF20 and BDF50 fuels are directly proportional to the engine load; while the BDF100 is inversely proportional, (vi) system has better energy and exergy efficiency when the engine is operated with the biodiesel fuels (vii) sustainability of the fuels are BDF100 > BDF50 > BDF20 > JIS#2, (viii) thermoeconomic and exergoeconomic parameters rates from maximum to minimum are JIS#2 > BDF20 > BDF50 > BDF100.  相似文献   

18.
This paper presents the results of the mail out survey conducted in the United States to unveil the current state of practice related to the posting of minimum speed limit signs on Interstate freeway system. The analysis of the survey results has revealed that half of the country (25 states) posts the minimum speed limit on Interstate freeways. The most common posting is 40 mph. There are few states that post 45 mph and 55 mph in some sections on Interstate freeways. The survey results has also discovered that many states raised the maximum speed limits on Interstate freeways as the consequence of the National Highway System (NHS) designation Act of 1995 without revising or studying the effect of the existing minimum speed limits on traffic operation. Implications for future research relates to a multi state study which will evaluate the relevance of minimum speed limits on speed variability that is created by the posting of minimum speed limit.  相似文献   

19.
Air quality inside transportation carriages has become a public concern. A comprehensive measurement campaign was conducted to examine the commuters’ exposure to PM2.5 (dp  2.5 μm) and CO2 in Shanghai metro system under different conditions. The PM2.5 and CO2 concentrations inside all the measured metro lines were observed at 84 ± 42 μg/m3 and 1253.1 ± 449.1 ppm, respectively. The factors that determine the in-carriage PM2.5 and CO2 concentrations were quantitatively investigated. The metro in-carriage PM2.5 concentrations were significantly affected by the ventilation systems, out-carriage PM2.5 concentrations and the passenger numbers. The largest in-carriage PM2.5 and CO2 concentrations were observed at 132 μg/m3 and 1855.0 ppm inside the carriages equipped with the oldest ventilation systems. The average PM2.5 and CO2 concentrations increased by 24.14% and 9.93% as the metro was driven from underground to overground. The average in-carriage PM2.5 concentrations increased by 17.19% and CO2 concentration decreased by 16.97% as the metro was driven from urban to the suburban area. It was found that PM2.5 concentration is proportional to the on-board passenger number at a ratio of 0.4 μg/m3·passenger. A mass-balance model was developed to estimate the in-carriage PM2.5 concentration under different driving conditions.  相似文献   

20.
In this paper, we propose a method of modeling free flow speed from the viewpoint of hydroplaning. First, the lift forces for different water depths were estimated using Bernoulli’s equation. Compared with the result of the experimental test performed by the Japan Automobile Research Institute, the hydrodynamic pressure coefficient was determined to be 0.03 (tf s2/m4). The validation of the predicted lift force is found in another published paper. A very good match is found between the computed values by the proposed numerical model and the data in other published papers. Then, the loss of contact force is considered to evaluate the hydroplaning performance of a tire. To simulate the hydroplaning speed, a tire-sliding model was utilized to obtain the traction and friction forces between the road surface and the tire. The observation data obtained in Japan in 2009 is compared with the physically computed hydroplaning speed, yielding the conclusion that the traction force at the measured desired speed is, on average, 23.4% of the traction force at hydroplaning speed. The analytical model offers a useful tool to quantitatively show that the free flow speed changes as the water depth increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号