首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
实时路段行程时间预测是动态交通分配中路径选择的关键技术之一,采用微观交通仿真手段和指数平滑方法估计路段行程时间,在路段行程时间估计模型中考虑了交叉口排队延误、信号控制延误和交叉口内转向行程时间,提出了基于灰色等维新息GM(1,1)模型的路段行程时间预测方法,根据路段行程时间的历史数据和实时采集数据,滚动预测未来的路段行程时间,通过实例应用证明了模型有很好的预测精度.  相似文献   

2.
在车联网环境下,为满足精细化的车辆诱导需求,提出基于换道轨迹规划模型的车道级行程时间估计方法。建立路网基础道路拓扑模型,对所构建的路网模型进行Link划分,并利用改进的5次多项式模型对车辆行驶轨迹进行描述,构建车辆在不同路段Link间行驶的换道轨迹规划模型;整合车辆在路段各个Link单元的行车轨迹与行程时间,实现车道级行程时间估计;选取单向4车道的城市道路为仿真算例,建立VISSIM仿真模型,验证本文模型性能。仿真结果表明,在不同的车辆行驶速度条件下,相比于传统行程时间估计方法,本文提出的改进5次多项式换道轨迹规划模型能够精确地得到车辆最短行程时间下的行车轨迹,实现车道级行程时间的准确估计。  相似文献   

3.
在固定检测器和浮动车数据的路段行程时间估计基础上,利用两种估计方法数据之间的互补性,应用自适应加权平均融合算法对估计结果进行融合处理,从而实现对路段行程时间更为精确的动态估计.以大连市中心城区为主要研究对象,通过交通调查和VISSIM仿真环境实现对固定检测器和浮动车的数据收集和行程时间估计.结果显示自适应加权平均融合能够有效提高路段行程时间估计精度,且适用于不同流量状态下的路段行程时间估计.  相似文献   

4.
路段平均行程时间估计方法   总被引:6,自引:0,他引:6  
为了有效利用线圈检测数据,精确估计路段平均行程时间,提出了一种路段平均行程时间估计方法。将路段平均行程时间分为平均行驶时间、平均排队时间和平均通过路口时间三部分。考虑线圈埋设的特点,通过估计平均行驶速度得到平均行驶时间。用分段时齐Poisson过程描述车辆驶入路段过程和驶离过程,用Markov排队模型描述车辆排队过程,用生灭过程描述排队车辆数,得到车辆排队模型,计算了路段有、无初始排队的平均排队时间。基于选取与路口相关的饱和流率和平均车长,计算了平均通过路口时间。计算结果表明:平均行程时间估计值与实测值的误差小于12%,说明路段平均行程时间估计方法可行。  相似文献   

5.
为解决交通网络最优路径问题,提出改进的行程时间估计模型,并设计基于该模型的最优路径算法。行程时间估计模型在分段截断二次速度轨迹模型的基础上进行改进,用路段节点的到达速度代替同一出发时刻下测得的速度,通过构造在时间和空间上连续的速度轨迹来估计行程时间。首先,基于Yen′s KSP算法以路段距离为阻抗求解K条最短路径;其次,分别用改进的行程时间估计模型估计K条最短路径的行程时间;最后,以行程时间为成本选择最优的路径。通过Sioux Falls网络的数值试验验证模型和算法的有效性和优越性。试验结果表明:改进的分段截断二次速度轨迹模型相比于原始模型精度平均提高了65%;算法的最优路径结果能减少路径经过的交叉口数和缩短最优路径的总长度,而且最优路径的行程时间估计结果 与真实值的MAPE保持在3%内。  相似文献   

6.
高速公路交通流处于高峰时,公路主线路段可能出现拥挤的瓶颈路段,导致车辆运行时间增加,路段运行效率降低等问题.本文从高速公路瓶颈区域路段交通流运行的时空特征出发,对现有的Papageorgiou模型进行扩展并考虑速度控制因素,使其适用于可变限速控制环境下的真实交通流运行状态,提出了适用于高速公路瓶颈区域的可变限速控制条件的改进模型,以控制周期内总通行量最大和车辆总行程时间最小为目标,建立高速公路主线可变限速控制优化模型.仿真结果表明,相对于固定限速控制,本文提出的可变限速控制方法可降低总行程时间7.45%,提高平均速度8.78%,表明该可变限速控制模型能在一定程度上缓解高速公路瓶颈区域的拥堵问题.  相似文献   

7.
为了改善利用SCATS交通数据估计路段行程时间的效果,通过分析SCATS实际交通数据获取时间间隔不一致的特征,构建了SCATS交通数据虚拟时间序列,将利用因子分析法提取的累计贡献率在85%以上的主因子作为交通模式特征向量的构成要素,用欧氏距离作为当前交通模式特征向量和历史交通模式特征向量相似性的测度指标,以路段行程时间估计误差最小为目标选取当前交通模式的近邻数,对交通模式之间距离的倒数进行归一化处理,确定了相似交通模式的行程时间权重,设计了基于SCATS交通数据的路段行程时间估计方法.实例结果表明:与多元线性回归方法相比,本文方法估计的路段行程时间平均绝对误差、平均绝对百分比误差和均方根误差分别平均减少了9.68 s、8.07%和4.5 s.   相似文献   

8.
针对高流量条件下高速公路主线瓶颈路段交通流运行态势恶劣导致通行效率降低的问题,从高速公路瓶颈路段交通流时空特性出发,对元胞传输模型进行扩展,使其能够对瓶颈路段和可变限速条件下交通流运行情况进行描述;在此基础上,构建可变限速控制模型,并采用阶梯限速控制方法对主线交通流进行控制,防止限速路段车辆排队上溯影响上游匝道车辆的正常通行.算例仿真结果表明:本文提出的瓶颈区域可变限速阶梯控制方法能够有效缩短车辆行程时间,在可变限速条件下,与无控制和仅单路段主线控制相比,车均延误分别减少了13.78%和1.60%.   相似文献   

9.
将城市道路周边建成环境的相关属性作为路段行程时间的解释变量,结合城市低频浮动 车数据,在不需要速度等GPS信息的条件下研究建成环境属性因素对路段行程时间的影响。同 时,给出一种新的路段行程时间分布估计方法,即利用路段车辆数的分布代替路段长度作为路段 行程时间的分配比例系数,得到路段行程时间的分布情况。为验证所提方法的正确性,以辽宁省 丹东市振兴区锦山大街为例进行分析,用极大似然估计法得到各类建成环境对行程时间的影响 参数值,并对比研究路段在有、无建成环境影响下的行程时间。结果表明:道路周边的建成环境 会在不同时段导致路段行程时间显著增加,学校的影响时间段主要在6:00-7:20,医院、诊所集中 在7:00-8:00,交叉口造成的行程时间增量在研究范围内整体较为平均。通过似然比检验,验证了 将建成环境变量作为路段行程时间影响因素的可靠性。  相似文献   

10.
低频GPS数据和交叉口延误下的行程时间估计   总被引:1,自引:0,他引:1  
为解决低频GPS数据条件下路段行程时间估计误差较大的问题,分析了车辆在道路交叉口影响区域的延误特征,根据两个相邻GPS点跨越一个或多个交叉口,以及跨越的交叉口影响区域內有无GPS点,划分了4种GPS分布类型,并设计了相应类型的基于交叉口延误计算的路段行程时间插值算法.以北京市八角地区实际GPS数据为例验证了本文算法,结果表明:在平峰和高峰时段,用本文算法计算的路段行程时间的平均绝对相对误差不超过14%;与改进插值法相比,平均估计精度提高了7.9%,在交叉口延误时间较大的路段效果更显著.   相似文献   

11.
为准确估计山区小城市路段行程时间,以山区小城市道路为研究对象,在分析其交通特性和传统BPR模型的基础上,通过定义路段累计流量,构造了基于路段累计流量的机非混行道路行程时间修正模型。采用人工记录法获取非拥堵状态下的实测数据,并通过VISSIM仿真得到拥堵状态下的实验数据,根据大量数据标定修正BPR模型的主要参数,并对两种模型进行误差分析。结果表明:山区小城市干路行程时间估计中,修正BPR模型的误差均值为4.597%,传统BPR模型的误差均值为35.021%;支路行程时间估计中,修正BPR模型的误差均值为3.120%,传统BPR模型的误差均值为46.737%。修正BPR模型的估计效果明显优于传统BPR模型,且非机动车干扰对支路路段行程时间的影响更为显著。  相似文献   

12.
定义路径行程时间可靠性为在交通事故期间内平均路径行驶时间小于事故前路径出行时间乘以可接受拥堵水平的概率,由此导出路网行程时间可靠性.假定事故持续时间服从正态分布并将研究时域划分成相同的时段,在先进出行信息下,利用元胞传输模型进行路段流量加载,给出了每一个时段内路径行程时间的递推式,并在每一个时段内更新1次路径出行时间,出行者根据更新的出行时间运用Logit模型进行路径决策,最后基于Monte-Carlo法模拟求解路网行程时间可靠性.算例结果表明,行程时间可靠性随事故持续时间和方差及需求的增加而减小;可靠性随可接受拥堵水平的增加而增加;在拥堵网络中,包含事故路段的OD间需求越高,可靠性越低.  相似文献   

13.
基于行程时间对交通需求的影响,建立路段交通流模型,对路段交通流量稳定性及通行能力的退化状态进行分析.在出行者的交通需求具有弹性的情况下,路段行程时间越长,交通需求越低.模型中行程时间由道路上的交通状态决定,车辆行驶过程的计算利用MITSIM模型,通过数值模拟方法分析弹性需求对交通流的稳定性及通行能力的影响.仿真结果表明,在交通需求和路段性能相互作用下,路段交通流量趋向于稳定,非饱和状态下的稳定流量随着交通压力的增加逐渐上升到最大通行能力,而饱和状态下的稳定流量小于最大通行能力且交通压力越高通行能力退化越严重.因此在城市路网规划时,应综合考虑路网中各路段通行能力,避免路段通行能力下降.  相似文献   

14.
为提高城市中心区干线公交车辆行程时间的预测精度,在拟合公交车辆行程时间分布特征的基础上,提出基于多源数据的干线公交行程时间预测模型.对RFID及GPS检测器获取的实际数据进行预处理及分布拟合,其中混合高斯分布函数适用于单路段拟合,对数正态分布适用于多路段的拟合.采用皮尔逊相关性系数对影响行程时间的因素进行相关性分析,其中上游路段前2 个时间窗的平均行程时间的影响最大.分别采用ARIMA、改进的SVM模型对行程时间进行预测,其中改进的SVM模型的平均绝对百分比误差为6.26%,优于ARIMA模型的11.69%,更适用于短距离交叉口间的公交车辆行程时间预测.  相似文献   

15.
为进一步提高城市道路行程时间短时预测的准确性,利用城市浮动车全球定位系统(global positioning system,GPS)数据,提出基于遗传算法(genetic algorithm,GA)优化的卡尔曼滤波(kalman filtering,KF)模型估计短时道路行程时间的方法。利用高斯滤波器对异常数据进行有效剔除,基于城市道路地理信息系统(geographic information system,GIS)数据提出道路地图匹配算法,利用卡尔曼滤波器预测匹配道路的行程时间,并通过遗传算法优化卡尔曼滤波的误差参数。实际算例表明:预测路段的行程时间误差均小于0.5 min,基于GA优化的KF算法能有效提高路段行程时间估计的精度。根据预测行程时间对上海市外环路各个路段不同时间的拥堵情况进行预测识别,预测结果有助于交通管理部门及时掌握城市道路运行状态信息。  相似文献   

16.
为提高城市中心区干线公交车辆行程时间的预测精度,在拟合公交车辆行程时间分布特征的基础上,提出基于多源数据的干线公交行程时间预测模型.对RFID及GPS检测器获取的实际数据进行预处理及分布拟合,其中混合高斯分布函数适用于单路段拟合,对数正态分布适用于多路段的拟合.采用皮尔逊相关性系数对影响行程时间的因素进行相关性分析,其中上游路段前2 个时间窗的平均行程时间的影响最大.分别采用ARIMA、改进的SVM模型对行程时间进行预测,其中改进的SVM模型的平均绝对百分比误差为6.26%,优于ARIMA模型的11.69%,更适用于短距离交叉口间的公交车辆行程时间预测.  相似文献   

17.
关明 《北方交通》2013,(8):39-41
行程时间可靠性已经成为道路网性能的主要指标之一,首先在总结已有路段行程时间可靠性的有关算法之后,计算了路段的行程时间可靠性。然后,将路段行程时间可靠性作为路阻函数,从用户均衡分配模型(UE)加以引申,建立了行程时间可靠性分配模型,并给出了相应的算法,最后,应用于实际的路网中进行了检验。  相似文献   

18.
降雨作为一种常见的气象条件,对高速公路网行程时间的稳定性有着直接的影响.本文针对雨天能见度降低、路面摩擦系数变小的特征,通过分析降雨的空间分布模式,建立了雨天路段单元自由流车速、通行能力以及公路网需求水平的修正模型,进而提出了雨天路段单元的广义行程时间函数.结合用户最优平衡分配模型,以及系统工程中的串并联理论,建立了雨天高速公路路段单元、路径、OD对和公路网的行程时间可靠度评价模型.应用Matlab工具箱模拟公路网上的降雨分布,设计了基于Monte Carlo方法的评价模型求解思路.最后以算例验证了该方法在行程时间可靠性评价中的应用.结果表明,能藉此有效地找出雨天公路网中行程时间敏感性最大的关键路段.  相似文献   

19.
为解决未来自动驾驶专用车道的规划设计问题,本文提出了一种自动驾驶车与人工驾驶车混合交通流路段阻抗函数模型.首先,分析了自动驾驶专用车道的设置对混合交通流中车辆跟驰模式的影响;其次,在此基础上,引入微观跟驰驾驶模型,推导了不同自动驾驶车辆渗透率条件下的路段通行能力函数,分析了自动驾驶车辆对路段通行能力的影响;然后,将混合交通流通行能力引入经典的BPR函数,推导了考虑自动驾驶的混合交通流路段阻抗函数模型;最后,设计了数值实验讨论了自由流速度(自由流行程时间)、自动驾驶车辆的渗透率和安全车头时距对路段阻抗的影响.结果 表明:(1)当路段流量较小时,自动驾驶车辆的引入对路段阻抗行程时间的影响较小;(2)当自动驾驶车的渗透率为30%时,设置自动驾驶专用车道对行程时间的改善最为明显;(3)当流量较小时,自动驾驶车辆渗透率对路段阻抗行程时间的影响较小,而随着路段流量的增大,自由流速度和自动驾驶车辆渗透率将共同决定路段的行程时间.相关成果可为未来自动驾驶专用车道的规划与设计提供理论支撑.  相似文献   

20.
从路段实际功能出发,提出基于路段与路径行程时间序列的相关性识别关键路段的方法.借鉴蒙特卡洛思想,以真实数据构造10万条随机路径验证该方法的可行性,并识别出对上海市路网行程时间有关键影响的路段集合.以上述集合为参照,利用模糊聚类及迭代累计平方和算法提取路段行程时间序列特征并构造两个新变量,结合基础属性建立二项Logit模型,从而主动查找关键路段.比较该模型与基础模型、随机分类器查找效果表明:基于最大归一化行程时间曲线聚类,其结果对关键路段识别模型的性能有提升效用;行程时间对数差分序列的结构性变点在路网和路段级别均有明显时间聚集特性,虽然其个数与路段关键性无明显关系,但其与常见波动程度指标相关性小,可保留用于描述行程时间波动常发性和聚集性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号