首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Many experimental investigations have previously been performed and recently done on different shipbuilding structural steels where the specimens size and crack depth/specimen width (a/W) were varied. A series of interesting results have been gained. It is worthwhile to have a review on the effect of a/W ratio on fracture toughness, and further theoretical analysis is necessary. In this paper, experimental work in elasticplastic fracture mechanics (EPFM) was discussed. Tests had been carried out on 10 kinds of strength steels. Results showed that J i and δ1 values increased with decreasing a/W when a/W<0.3 for three-point bend specimens and that shallow crack specimens which have less constrained flow field give markedly higher values of toughness than deeply notched specimens. However, for a/W>0.3, the toughness was found to be independent of a/W. Slip line field analysis shows that for shallow cracks, the hydrostatic stress is lower than that from standard deeply cracked bend specimen which develops a high level of crack tip constraint, provides a lower bound estimate of toughness, and will ensure an unduly conservative approach when applied to structure defects especially if initiation values of COD/J-integral are used.  相似文献   

2.
It is well known that compressive prestrain reduces ductility in steels. On the other hand, it has also been found that high stress triaxiality reduces equivalent plastic strain at the onset of ductile fracture. In this research, plate specimens and notched bar specimens, which were prestrained in compression with bending, were used in reversed bending tests, and the effect of compressive prestrain on ductile crack initiation in steels was investigated. It was found that small ductile cracks occurred from the microscopic wrinkles which were formed on the concave surface with compressive prestrain. The critical relationship between stress triaxiality and equivalent plastic strain at ductile crack initiation was investigated by finite-element analysis. It was found that ductile crack initiation in steels with compressive prestrain can be estimated qualitatively by the relationship between stress triaxiality and equivalent plastic strain.  相似文献   

3.
A series of tests was performed with three-point single-edge-notched-bend (SENB) specimens in a condenser material (Titanium alloy). Results show that the J-integral values of welded joint and HAZ are obviously smaller than those of the base metal. It signifies that the welding process can result in a reduced toughness of Titanium alloy and the effect of crack orientation on toughness value is not negligible for engineering applications. Besides, the J-integral values of L-T direction specimens are much higher than those of LS ones. The J-integral values of rolled ring are: J_(C-R)>J_(C-L)>J_(L-R).  相似文献   

4.
设计了一种含局部减薄半椭圆缺口的紧凑拉伸试样(ECT),以模拟压力容器接管区结构,并对16MnR钢的ECT试样进行了不同应力比的恒幅低周疲劳裂纹扩展试验.结果表明:ECT试样具有类似压力容器接管区的高应变分布场;低周疲劳裂纹扩展速率与由线积分定义计算的循环J积分,△J在双对数坐标中呈良好线性相关,且回归的材料参数与相同材质的高周疲劳试验获得的Paris常数基本一致.  相似文献   

5.
This study reports a deformation limit for the initiation of ductile fracture failure in fatigue-cracked circular hollow section (CHS) X-joints subjected to brace in-plane bending. The proposed approach sets the deformation limit as the calculated crack driving force in a fatigue crack at the hot-spot location in the tubular joint reaches the material fracture toughness measured from standard fracture specimens. The calibration of the proposed approach and the numerical procedure utilizes two large-scale X-joint specimens with fatigue generated surface cracks. The subsequent numerical investigation covers X-joints with two different brace-to-chord intersection angles, a wide range of geometric parameters and a practical range of material parameters. The development of the deformation limit includes a non-dimensional material toughness, which covers both the geometric parameters and material properties. The lower-bound deformation limit thus developed exhibits a linear relationship with respect to the crack depth ratio and indicates consistent values among X-joints with different brace-to-chord intersection angles.  相似文献   

6.
Due to the spatial complexity and fabrication characteristics of offshore platforms, it is inevitable to encounter overlaps or proximity of weld lines in tubular joints. Several international standards such as American Petroleum Institute (API), American Welding Society (AWS), and American Institute of Steel Construction (AISC) regulate the minimum distance between primary weld beads; however, any logical and detailed background of this limitation has not been presented. For a non-compliant weld joint where the regulation is not met, fracture toughness calculation is a typical index to verify the structural integrity.This research consists of two parts. First, weld residual stress distributions are calculated by a 3D thermo-mechanical nonlinear Finite Element Analysis. Two crossing welds, a T-weld crossing on a butt weld, are simulated in one model. A separate tee and a butt welding simulations are also performed for a comparative purpose. Second, SIFs and J-integral values are calculated at the surface and deepest crack tip locations for four different types of semi-elliptical surface cracks. Four cracks are embedded into the weld model and the residual stress distribution from the 3D thermo-mechanical FEA are mapped to a 3D FE crack model as initial conditions. An additional axial tensile load is also imposed. SIF values are compared with those using the weighting function method for the butt weld model subject to three load cases, i.e., tensile stress only, weld residual stress only, and both of them. From the simulation, a tubular joint containing a chord girth weld intersected with weld beads of brace is found to show lower the SIF values than that having only a girth weld on chord.  相似文献   

7.
《Marine Structures》2004,17(1):1-27
This paper presents a combined experimental–numerical procedure for development and calibration of macroscopic crack propagation criteria in large-scale shell structures. A novel experimental set-up is described in which a mode-I crack can be driven 400 mm through a 20(+) mm thick plate under fully plastic and controlled conditions. The test specimen can be deformed either in combined in-plane bending and extension or in pure extension. Experimental results are described for 5 and 10 mm thick aluminium and steel plates. By performing an inverse finite-element analysis of the experimental results where the simulated crack growth is forced to correspond to the experimental observations, empirical criteria for ductile crack propagation emerge very clearly. Using the experiments with edge crack specimens (ECS) in combined in-plane bending and extension, crack propagation criteria are developed for steel and aluminium plates, mainly as curves showing the critical element deformation versus the shell element size. These derived crack propagation criteria are then validated against a separate set of experiments considering centre crack specimens (CCS) which have a different crack-tip constraint. The applicability of the often-used equivalent strain criterion is discussed versus a more rationally based criterion which takes into account the stress tri-axiality. A large-scale grounding experiment is also simulated showing very good agreement with measurements. The performance of the proposed model is in general good and it is believed that the presented results and experimental–numerical calibration procedure can be of use in practical finite-element simulations of collision and grounding events with the use of shell elements. As discussed, the paper provides a clean framework for further development of macroscopic crack propagation criteria in large-scale plate structures.  相似文献   

8.
In this study corrosion-fatigue tests have been conducted on fracture mechanics specimens extracted from an S355 G10+M structural steel welded plate. The tests have been performed on compact tension specimens with the crack tip located in the heat affected zone. The corrosion-fatigue test results from this study have been compared with the data available on the base metal as well as air tests on the same material. Moreover, the obtained results have been compared with the corrosion-fatigue data available in the literature on a wide range of steels and also the fatigue trends for welded joints in free-corrosion condition recommended in the BS7910 Standard. The effect of the specimen orientation, with respect to the weld region, is also examined in this study and it has been found that higher corrosion-fatigue crack growth rates are generally observed in the tests with 0° orientation. The results have also shown that the corrosive environment has significant effects on the fatigue crack growth acceleration at the beginning of the tests; however, as the crack propagates, the environmental damage effect on crack growth behaviour becomes less pronounced. The results presented in this study are discussed in terms of improvement in the structural integrity assessment of offshore wind turbine monopiles.  相似文献   

9.
通过对TC4钛合金焊接试样拉伸疲劳断裂试验结果及其断口和卸载表面观察分析,发现试样断口上有明显的河流花纹走向和起裂源,并伴有韧窝和韧性条带特征。起裂源常位于断口表面角落附近。其断裂机理是疲劳拉伸载荷作用下,在应力值比较高的时候一些沿层裂纹开始出现并扩展,当疲劳裂纹的长度达到与疲劳外加力所匹配的临界裂纹长度时,突然发生准解理断裂。试样断口呈现出准解理与韧窝断裂的混合特征。  相似文献   

10.
11.
在老龄化引起的船舶结构安全性问题中,裂纹损伤是结构强度衰减的一个重要因素。文章采用逐步加载法对含裂纹损伤的加筋板压缩剩余极限强度进行试验研究。设计六种典型的穿透裂纹损伤加筋板,对损伤试件进行轴向压缩试验。通过改变裂纹尺寸、位置及倾角参数并根据试验观测结果,探讨了不同裂纹参数下加筋板的屈曲破坏特点和对剩余极限强度影响。试验结果表明,不同的裂纹长度以及裂纹位置改变加筋板结构承载力的分布,影响结构应力应变场,进而改变其失效崩溃模式;倾角为45°的裂纹相对于垂直于加筋的裂纹对加筋板结构的剩余极限强度影响较小,此外初始缺陷对结构的剩余极限强度的影响也不容忽视。  相似文献   

12.
In part I of this series, experimental investigation in EPFM (elastic-plastic fracture mechanics) had been discussed. In this paper, experimental investigation in LEFM ( linear elastic fracture mechanics) is given. Fracture toughness tests had been carried out on three different strength steels, using both through-cracked specimens with different α/W ratio and semi-elliptical cracked specimens with variable crack size and shape. Results show that the fracture toughness KIC increases with decreasing α/W when α/W 〈 0.3 for three-point-bend specimens, and that for α/W 〉 0.3, it is independent of α/W. Shallow crack specimens, both through-cracked and surface-cracked, gave markedly higher values than deeply notched specimens. However, the effect of crack shape on fracture toughness is negligible. Results also show that the LEFM approach to fracture is not tenable for design stresses where αc is often very small, far less than 2.5 ( KIC/σy)^2.  相似文献   

13.
We propose a new method to estimate the depth of a surface crack based on the measurement of crack opening deformation (COD) by using strain gauges. Through finite-element (FE) analysis of several surface cracks with different crack depth, it was found that the distribution of crack depth along the crack line can be approximated by multiplying a certain proportional α to the distribution of COD per unit nominal strain (normalized COD). The strain gauges are cemented just on the crack line and at a reference position, and the normalized CODs are measured under the impact load excited by hammer punching. The surface crack depth is estimated from the normalized COD measurements by a numerical–experimental iteration method based on FE analysis. The estimated distribution of the surface crack depth along the crack line shows good agreement with the shape of a real crack depth.  相似文献   

14.
对船用钢进行长裂纹止裂特性研究表明:它们的脆性裂纹止裂能力不够。TMCP钢有足够的脆性裂纹止裂能力。对船用钢进行了两种实尺(actual-scale)模型试验,明确了脆性裂纹扩展的条件。根据试验结果提出了止裂韧度值Kca,已经归纳在"脆性裂纹止裂设计指导性文件"中。  相似文献   

15.
钢纤维混凝土由于能有效地改善混凝土材料的力学性能,在道路工程中得到了较多的应用。文中对钢纤维混凝土在不同纤维含量、不同试件宽度以及不同初始裂缝深度下的断裂性能进行了试验研究。研究表明钢纤维混凝土的临界应力强度因子KIc和临界J-积分JIc与试件宽度无关,但随着初始裂缝深度的增加而减小。  相似文献   

16.
大结构模型低周疲劳试验周期较长,成本高,一般情况只能通过一只或少量的模型研究裂纹的形成机理和扩展规律,确定裂纹的形成寿命和扩展寿命.文章通过开展裂纹尖端的应力场研究,提出了一种在大结构模型中预制多种裂纹类型同时进行低周疲劳试验的并行疲劳试验方法.利用该方法开展了锥柱结合壳结构模型疲劳试验,得到了该模型的多种裂纹类型的裂纹形成寿命和裂纹扩展寿命试验结果,验证了并行疲劳试验方法的可行性和可信性.  相似文献   

17.
采用预制缺口的舰体结构试样,对舰用907A钢在拉伸疲劳载荷作用下的裂纹扩展规律进行了高频疲劳试验研究,得出在拉伸疲劳载荷作用下舰体结构的裂纹扩展规律,模拟了舰船在航行时波浪交变载荷对舰船结构的破坏作用,试验结果对预报破损舰船在波浪中航行时的裂纹扩展情况具有参考作用。  相似文献   

18.
High-cycle fatigue experiments are performed on welded tubular steel X-joints, with braces and chord of equal diameter. They are scaled-down joints, used extensively in offshore wind platforms. Three different welding procedures are considered in specimen fabrication: manual, fully-automatic and manual with HFMI post-weld treatment. Τwo possible locations for crack initiation were identified: chord “crown” and “in-between location”, also verified by numerical calculations and fractography of failed specimens. Monotonic loading tests on fatigue-cracked specimens showed good performance in terms of ultimate strength and deformation capacity, despite the presence of through-thickness cracks. The results are compared with predictions from relevant design standards.  相似文献   

19.
This study investigates the low-cycle fatigue behavior of mooring chains high-strength steel grade R4 under different strain amplitudes and strain ratios at room temperature. A fatigue test program has been carried out on small low cycle fatigue specimens cut from large mooring chains. The experimental results characterize the cyclic stress-strain relationship, the mean stress relaxation behavior, and the cyclic plasticity parameters of the material. Strain energy density is correlated with fatigue life through a simple power-law expression and very well represented by Basquin-Coffin-Mansion relationship. Further, a non-linear elastic-plastic material model is calibrated to the experimental stress-strain curves and used for the estimation of energy dissipation in the specimens under applied cyclic loads. The predicted fatigue life using the calibrated material parameters demonstrates a close agreement with the experimental fatigue life. Numerical simulations are carried out to analyze local plastic straining and assess crack initiation at the pit site of corroded mooring chains considering the multiaxial stress state. An energy-based approach is employed to estimate the number of cycles needed for a crack to initiate from an existing corrosion pit.  相似文献   

20.
The development of studying flexible pipe bend reinforced by Kevlar fibers   总被引:3,自引:0,他引:3  
The flexible pipe bend can not only reduce the structural vibration and fluid noise in pipeline, but also realize the flexible connection of a horizontal line and a vertical line and compensate the displacement of three dimensions produced by the shock or vibration of pipeline in the special situations. Up to now, little attention has been paid to study the flexible pipe bend applied in the pipeline of medium or high pressure, because no appropriate framework materials can be used to reinforce it which must endure the burst pressure higher than 10 MPa. The investigation shows that it is possible to produce the flexible pipe bend of medium or high pressure if such fibers with high performance as Kevlar fibers are used to be its reinforced materials. However, its structural designing theory, manufacturing technology and measuring techniques aren‘t yet perfect and systematic, which leads to the instability of the performance of products. Furthermore, few references about its research can be seen. Therefore, it is necessary to systematically and thoroughly develop the structural designing theory, manufacture technology and measuring techniques of flexible pipe bend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号