首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
为探讨箱梁的结构噪声及其影响因素,以跨度32 m的混凝土简支箱梁为研究对象,采用混合有限元-边界元法进行数值仿真,并进行了现场试验验证.在此基础上,探讨了板厚和腹板倾角对箱梁结构噪声的影响规律.研究结果表明:混合有限元-边界元法适用于箱梁的结构噪声分析;箱梁振动和结构噪声的主要频率范围分别为40.0~125.0 Hz和31.5~100.0 Hz,底板附近在63.0 Hz出现噪声峰值;增大板厚能降低箱梁结构噪声,且增大顶板厚度最有效;当腹板倾角为0°~12°时,箱梁的结构噪声较小.   相似文献   

2.
基于小波变换分析箱梁振动噪声的时频特性   总被引:5,自引:2,他引:3  
为探讨列车激励引起箱梁振动噪声的时频特性,以32 m混凝土简支箱梁为例,现场实测箱梁各板件的振动和近场噪声,并采用小波变换结合MLP (modified Littlewood-Paley)小波基的方法进行信号处理. 引入小波脊线和小波能量比两个指标对信号的时频特性进行定量分析,在此基础上,探讨了行车速度和行车方向的影响规律. 研究结果表明:相比Morlet小波和Mexihat小波,MLP小波更清晰地刻画箱梁振动噪声在时-频两域的局部集中特性;箱梁噪声比振动的频变程度要小,且前者的小波能量在频域上更为集中;翼板振动和腹板振动的频变特性分别对行车速度和行车方向敏感;45~60 Hz范围是箱梁噪声控制的关键频率范围.   相似文献   

3.
实测了城市轨道交通简支箱梁各板件的振动与近场噪声, 结合板件声辐射理论研究了箱梁结构振动辐射噪声和箱梁振动的关系; 基于箱梁结构噪声易产生绕射的低频特性, 计算了矩形混凝土板件在不同开孔工况下辐射的结构噪声变化情况; 在考虑箱梁腹板开孔的基础上建立了车辆-轨道-箱梁耦合有限元模型和箱梁振动-结构噪声有限元-无限元模型, 分析了箱梁腹板开孔前后各板件的振动和结构辐射噪声变化情况。研究结果表明: 箱梁板件声辐射效率随频率的增加并不呈现线性关系, 箱梁各板件近场低频(低于250 Hz) 辐射噪声与结构振动加速度级也并非简单的线性关系, 箱梁辐射噪声由箱梁振动和箱梁各板件声辐射效率共同决定; 对于两端简支的开孔板件, 在开孔率基本一致(0.4%左右) 的情况下, 开孔直径越小, 板件振动辐射噪声声压级越小; 采用有限元-无限元方法模拟箱梁近场低频结构噪声, 既能解决单独采用有限元法时声场边界反射的影响, 也避免了采用有限元-边界元方法时多软件交叉使用的不便; 腹板开孔虽然增加了箱梁板件在某些频率(100~125 Hz) 处的振动响应, 但由于箱梁内、外部声场连通, 使得声短路效应增加, 降低了板件的声辐射效率和相应频段的噪声; 腹板开孔后在1~250 Hz频段内顶板、底板和腹板附近的总声压级分别降低了9.43、2.74和1.63 dB, 从而使箱梁结构噪声得到了控制。   相似文献   

4.
针对列车通过城市轨道交通高架时引起的桥梁-声屏障系统结构噪声问题,在某市域铁路箱梁段分别选取无声屏障和直立式声屏障地段,开展噪声现场测试;通过对比无声屏障和直立式声屏障地段的测试结果,分析了箱梁-声屏障系统结构噪声的频谱特性;基于有限元-边界元法,建立了箱梁-声屏障系统振动声辐射数值计算模型,研究了箱梁-声屏障系统结构噪声的空间分布规律,探讨了车速和声屏障高度对箱梁-声屏障系统结构噪声的影响。研究结果表明:当列车以约93 km·h-1的速度通过时,直立式声屏障对高频轮轨噪声起到了很好的降噪作用,但会使低频结构噪声增大;声屏障结构噪声的影响主要集中于160 Hz以下的低频段,箱梁-声屏障系统结构噪声的峰值出现在63 Hz左右;箱梁-声屏障系统结构噪声呈现出近场随距离衰减较快,远场随距离衰减越来越慢的趋势,箱梁正上方和正下方的结构噪声均超过96 dB,距离桥梁中心线120 m处的结构噪声衰减至72 dB;声屏障结构噪声对于梁侧声场的影响较大,与无声屏障地段相比,设置了高度为3.15 m的直立式声屏障之后,梁侧结构噪声增大了2~5 dB;当车速由93 km·h-1增大到120 km·h-1时,箱梁-声屏障系统结构噪声辐射在梁侧最大增加7 dB以上;当声屏障高度由3.15 m增大至6.3 m时,箱梁-声屏障系统结构噪声辐射在梁侧最大增加3 dB以上。   相似文献   

5.
为更好地开展高速列车气动降噪设计,建立了高速列车头车第一组转向架区域的6参数模型,采用计算气动声学和拉丁超立方抽样实验所设计的方法,得到了13个参数化模型的远场气动噪声、转向架舱内湍流脉动功率级和声功率级,并分析了底部结构参数对远场和近场气动噪声的影响规律.结果表明:底部结构参数对远场噪声影响范围为75.4~78.9 dB(A),裙板高度、排障器厚度、转向架舱后缘倒角和舱长度与远场噪声为负相关,舱前缘倒角、排障器前缘夹角与远场噪声为正相关,底部结构参数的变化主要影响中心频带315~1 250 Hz间的噪声能量;排障器厚度和前缘夹角与远场噪声、舱内湍流脉动功率、声功率均为负相关;裙板高度和远场噪声、舱内湍流脉动功率级为负相关,与舱内声功率为正相关.  相似文献   

6.
基于统计能量分析(SEA)和半无限流体方法,建立6节编组的B型列车车外噪声预测仿真模型;通过试验提取车体SEA模型的振动激励和轮轨噪声激励,施加给车体并计算分析了车外噪声特性;以中国某城市轨道交通列车通过噪声试验对模型进行验证,并探讨了列车各板单元和轮轨噪声声源对车外场点声压的贡献量。研究结果表明:统计能量分析和半无限流体方法能够准确预测车外噪声,计算效率为常规方法的14.1倍;车速为60 km·h-1时,车外7.5和30.0 m处噪声显著频段为400~1 600 Hz,声压级随频率升高先增大后缓慢下降,其变化趋势和轮轨噪声变化趋势一致,最大幅值频率集中在800 Hz处,最大值分别为64.88、61.75 dB(A);车外噪声贡献量由大到小依次为轮轨噪声、车窗、侧墙、车门、底板、顶板、端墙;车体振动辐射噪声在低频段的贡献较大,在中心频率为20~100 Hz时,车外噪声主要来源为车窗、侧墙,其贡献率分别达到21.2%和19.2%;在中心频率为100~500 Hz时,车体各板及轮轨噪声贡献率差异较小;在中心频率为500~5 000 Hz时,车体各板块的贡献率呈缓慢下降趋势,轮轨噪声的贡献率随频率升高逐渐增加,在2 000~5 000 Hz的1/3倍频带内达到60%以上。   相似文献   

7.
为揭示高速铁路桥梁结构振动产生与传递机理,分别采用数值方法与现场实测研究时速300 km/h高速列车诱发高架箱梁结构振动特性。首先,建立高架简支箱梁三维有限元动力学模型,分析列车以300 km/h速度通过时,高架箱梁结构振动特性及传递规律。然后,选择沪昆高铁高安—南昌区间某高架轨道,对高速列车引起的桥梁结构振动进行现场测试,并将有限元计算结果与实测结果进行对比。结果表明:有限元分析与现场实测结果在20~400 Hz吻合良好。桥梁结构振动的优势频率为31.5~125 Hz,峰值频率为31.5~63 Hz,在16 Hz处有一个明显的波谷;当频率大于200 Hz时,桥梁结构加速度振级急剧下降,可以针对31.5~63 Hz频率进行桥梁结构减振设计。桥梁顶板最大加速度振级为88.59~100.48 dB,对应的峰值频率为31.5 Hz和40 Hz;桥梁底板最大加速度振级为82.96~94.29 dB,对应的峰值频率为31.5 Hz和63 Hz,箱梁底板振动对桥梁结构振动的贡献最大。  相似文献   

8.
以高速铁路WJ-7B型扣件胶垫为研究对象,通过动态力学性能试验测试了扣件胶垫在不同温度下的动力性能;结合温频等效原理、Williams-Landel-Ferry方程和高阶分数导数FVMP模型表征了扣件胶垫的黏弹性力学特性;将该模型代入建立的桥梁振动与结构噪声预测有限元-边界元模型,并与Kelvin-Vogit模型对比来分析扣件胶垫黏弹性对箱梁振动和结构噪声的影响。研究结果表明:扣件胶垫黏弹性表现为动参数的温频变特性,刚度与频率正相关,与温度负相关,阻尼与频率和温度均负相关,阻尼在1~100 Hz内变化明显,在100 Hz以上变化较小;扣件动参数测试值与高阶分数导数FVMP模型拟合值吻合良好,采用高阶分数导数FVMP模型可以准确描述扣件在宽温宽频下的动态黏弹性力学行为;仅考虑扣件胶垫频变特性时,桥梁在25~63 Hz振动加剧,在80~200 Hz振动减弱,在峰值频率63 Hz处顶板、腹板和底板的加速度振级分别增大5.62、0.91和2.94 dB,桥梁横桥向各板垂向近场点和梁底下方靠近地面处声辐射明显增大;同时考虑扣件胶垫温变与频变特性时,随着温度的降低,桥梁在31.5~50.0 Hz振动不断减小,在63~200 Hz振动不断增大,桥梁横桥向在顶板斜上方、腹板和底板垂向近场点和梁底下方靠近地面处声辐射减小,温度从20 ℃降到-20 ℃时,总体声压级最大降低了2 dB左右;忽略扣件胶垫黏弹性会导致桥梁振动和结构噪声预测产生偏差,仿真分析时应考虑扣件胶垫的黏弹性,以提高预测的准确性。   相似文献   

9.
为研究高速列车动车转向架气动噪声特性,建立了动车转向架空气动力学模型,采用定常RNGk-湍流模型与宽频带噪声源模型对其气动噪声声源进行初步探讨,并结合非定常LES大涡模拟与Lighthill声学比拟理论进行了远场气动噪声分析。研究结果表明:动车转向架气动噪声源为轮对、构架、牵引电机1、枕梁、垂向减振器、抗侧滚扭杆等结构的迎风侧凸起部位,且构架对动车转向架远场气动噪声的贡献最大,其次为轮对和抗侧滚扭杆,然后为垂向减振器和枕梁,牵引电机1、牵引电机2、空气弹簧和横向减振器对远场气动噪声的贡献较小。动车转向架远场气动噪声是宽频噪声,具有衰减特性、幅值特性和气动噪声指向性。在低频部分能量较大,中心频率为25、50Hz,且分布规律不随运行速度的改变而变化。   相似文献   

10.
以株洲建宁大桥斜拉桥为工程背景,用板壳单元模拟箱梁,研究了顶板、底板和斜腹板厚度对斜拉桥箱梁剪力滞效应的影响,通过计算结果的分析和比较,对影响斜拉桥箱形主梁剪力滞效应的顶板、底板和斜腹板厚度进行了参数分析,计算结果表明:在斜拉桥单箱三室主梁中,顶板、底板和斜腹板厚度对顶板剪力滞效应的影响大于对底板剪力滞效应的影响;底板和斜腹板厚度增加均会使顶板剪力滞效应趋于不均匀;在顶板、底板和斜腹板厚度三者变化中,斜腹板厚度变化对于剪力滞效应的影响最为显著.  相似文献   

11.
为准确研究单箱双室箱梁在偏心竖向荷载作用下的畸变效应,引入双室箱梁反对称和正对称畸变的概念,补充矩形截面单箱双室箱梁畸变研究的假定. 采用不同定义的畸变角分别描述箱梁的反、正对称畸变,用板元分析法和能量变分法分析单箱双室箱梁的畸变;采用2个参数分别描述顶板、底板和腹板上的畸变正应力分布,以适应双室箱梁正对称畸变;考虑正对称畸变对双室箱梁畸变效应的影响,比较对应单室和双室箱梁的畸变效应,研究中腹板厚度改变时双室箱梁畸变角沿梁长的变化. 研究结果表明:考虑了正对称畸变影响的单箱双室箱梁畸变正应力的解析解和有限元数值解更吻合,误差不超过8.71%;正对称畸变正应力较小,最大只占反对称畸变正应力的28.08%;箱梁中腹板能有效减弱偏心竖向荷载作用引起的箱梁畸变,可使角点处的畸变正应力降低到对应单室箱梁的49.09%;采用2个参数描述箱梁正对称畸变时各板件上畸变正应力的分布比传统方法的更合理;改变中腹板厚度可使单箱双室箱梁畸变发生明显的变化,厚度增大时畸变逐渐减小.   相似文献   

12.
为研究列车通过时高架轨道箱梁结构的振动响应,采用有限元方法分别建立了高架简支箱梁的三维振动分析模型,计算当列车分别以60,80,100,120 km/h的速度通过时城市高架轨道箱梁结构的动力响应。模态分析结果表明:固有频率高于10 Hz的箱梁振动模态开始呈现截面变形,随着频率增加,箱梁结构振动形式逐渐表现为各构成板件的弯曲振动;时域分析结果表明:当列车经过时,箱梁结构振动加速度幅值分布呈现翼缘最大、腹板次之、桥面板和梁底最小的规律,钢轨、轨道板、桥面板、翼缘、腹板和梁底板的振动水平分别为140~160,110~120,110~120,115~130,110~125,105~115 d B,振动水平随车速的提高而增大。  相似文献   

13.
基于π定理和量纲分析法,推导了某32 m高架轨道箱梁结构缩尺模型与原型物理量之间的相似关系,并通过建立动力仿真模型进行计算,验证了相似关系的准确性;以该相似关系指导设计,并通过合理选材,制作了几何相似比为10∶1的轨道箱梁结构缩尺试验模型;通过激振试验获取了缩尺试验模型的模态频率、振型和加速度响应,并与有限元仿真结果对比,验证了缩尺试验模型的有效性;在此基础上利用该缩尺试验模型研究了轨道箱梁结构的振动传递特性。研究结果表明:高架轨道箱梁缩尺模型与原型结构前10阶模态频率误差均小于1%,且由缩尺模型计算结果反演的加速度响应曲线与原型结果趋势一致,模型与原型之间相似关系推导正确;缩尺试验模型实测模态频率与有限元仿真结果的误差均在8.8%以内,各阶模态振型吻合,且实测加速度响应随时间变化趋势与有限元仿真结果一致,制作的高架轨道箱梁结构缩尺试验模型有效;当振动在轨道结构中传递时,扣件和橡胶层对1 000 Hz以上的高频振动具有明显的衰减作用;当振动由箱梁顶板向底板传递时,顶板加速度导纳最大,翼板次之,其次是腹板,底板加速度导纳最小;设计制作的高架轨道箱梁结构缩尺试验模型能够反映原型振动响应的一般传递规律,可用于轨道箱梁结构振动传递特性与控制关键技术研究。   相似文献   

14.
汪永强 《北方交通》2020,(10):11-14
以变截面悬臂箱梁为工程背景,利用有限元分析方法,研究不同宽跨比、宽高比和承托长度对变截面悬臂箱梁剪力滞效应的影响规律。研究结果表明:宽跨比和宽高比对悬臂箱梁顶板剪力滞效应影响显著,随着宽跨比和宽高比的增加,悬臂箱梁锚固端截面顶板的剪力滞系数增加;悬臂箱梁结构设置承托,能够削弱箱梁顶板的剪力滞效应,且随着承托长度的增大,箱梁顶板的剪力滞效应逐渐减弱。  相似文献   

15.
基于有限元-统计能量(FE-SEA)混合法,建立钢-混结合梁桥模型,在列车运行速度为200 km/h、列车交会条件下,预测桥梁各板块的振动响应及结构噪声.结果表明,当列车交会时:各板块中点处的振动加速度级均有所增大,优势频段为40~120 Hz,峰值频率在65 Hz;在全频段内,各板块声压级均增大,单向行驶和列车交会两...  相似文献   

16.
为了研究合理的轨道结构抗震设计参数,基于轨道结构动力学理论,建立考虑地震激励源的轨道动力学分析模型,计算地震激励引起的CRTSⅢ型板式无砟轨道结构动力响应,进而研究轨道结构参数变化对各动力响应变量的影响规律,得出以下结论:典型地震波的频率基本处在0~10 Hz范围内,轨道结构的三向自振频率均大于10 Hz;地震作用下的轨道位移可能会超过规范限值要求,可通过将复合轨道板和底座相连接的方式加强轨道结构抗震;当扣件刚度或底座板弹性模量递增时,轨道结构动力响应指标均随之递增,因此在确保轨道参数合理匹配的前提下,适当降低扣件刚度、底座弹性模量有利于结构抗震设计;当扣件刚度或底座板弹性模量改变时,轨道板横向位移、底座板纵向应力、钢轨横向加速度显著变化,检算时需重点关注。研究成果可为轨道结构抗震设计、抗震评估、抗震加固措施提供借鉴。  相似文献   

17.
梁板是桥梁上部结构的主要承重构件,而箱梁和空心板等封闭式梁板结构难以用尺子直接量取梁板各壁板的厚度,需要有效的检测手段测得各壁板的厚度,保障其安全性和耐久性。为了寻找快速准确便捷的梁板厚度检测方法,采用冲击回波法对箱梁和空心板进行检测,结果显示,预应力管的存在使主频率变小,检测厚度增大;预应力管对其周围区域均会产生影响;在板厚18 cm、孔径为5.6 cm梁板中,其影响系数约为0.74,影响范围约为10 cm。  相似文献   

18.
无砟轨道层间界面是其薄弱环节,雨水侵入会加剧层间损伤.为研究无砟轨道层间离缝内动水压力分布规律,建立无砟轨道层间脱空平面计算模型,分析脱空深度与开口量对脱空区域垂向位移的影响,确定与现场实测接近的脱空深度;并设计无砟轨道层间脱空模拟装置,验证高频荷载作用下该装置的有效性;基于此装置,开展层间离缝动水压力试验,研究荷载频率、离缝开口量对动水压力的影响.结果表明:当荷载频率为25 Hz,幅值为1.1 kN时,层间脱空模拟装置板端最大垂向相对位移与现场测试结果吻合,表明该装置能模拟层间动水;在高频荷载作用下,层间离缝内水压力正负交替变化,动水压力沿离缝深度方向增大,在离缝尖端水压力最大为15.794 kPa;荷载频率从15 Hz提高至25 Hz时,最大动水压力从1.646 kPa增长到15.794 kPa,约增大10倍;开口量从8 mm增加至14 mm时,最大动水压力从8.320 kPa增大到15.794 kPa,约增大2倍.  相似文献   

19.
以跨度为32m的简支高架箱梁为研究对象,利用有限元法与间接边界元法相结合,分析了德国低干扰轨道谱激励下不同参数对双块式无砟轨道高架箱梁结构噪声的影响.结果表明:扣件刚度对钢轨的振动位移和箱梁底板的振动加速度影响较大,对高架箱梁结构噪声的影响主要在32Hz以下;行车速度对钢轨的振动加速度和箱梁底板的振动位移影响较大,对高架桥梁结构噪声的影响比较强烈,而且距离线路中心线距离越远的场点,其所受车速影响越大.  相似文献   

20.
为增强箱梁结构顺桥向的抗弯刚度和横向抗扭刚度,一般都在墩顶和跨中设置横隔板,但横隔板对附近区段箱梁的受力性能是否有不可忽略的影响,这是通常设计中未曾清晰认识的问题。现以某大桥墩顶附近顶板开裂这一情况为例,具体分析墩顶横隔板对顶板力学性能的影响。结果表明顶板的受力情况在横隔板附近与远离横隔板的区域存在明显差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号