首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
主桥顶升支座更换对变截面连续梁桥结构性能的影响分析   总被引:1,自引:0,他引:1  
基于桥梁支座更换问题,利用桥博V3.2.0程序计算支座顶升对三跨变截面连续梁受力状态的影响,以保证梁体结构的安全。分析结果显示:梁体截面应力增量与顶升近似呈线性关系;顶升强迫位移10mm对梁体受力影响较小,最大增量为5.9%;且设置支座顶升最大强迫位移为10mm作为支座更换限制高度能保证梁体安全。  相似文献   

2.
为了研究地震作用下深水薄壁空心桥墩内外域水体动水压力对连续刚构桥梁动力响应的影响,应用流固耦合有限元理论,考虑重力、纵向预应力和动水压力,建立了庙子坪岷江大桥连续刚构桥梁的计算模型,并采用实测的地震波进行计算.结果表明:动水压力对连续刚构桥梁自振频率和振型的影响不大,前30阶频率降低率最大值约为8%,箱梁各部分横向位移峰值增量在10%~20%之间,主墩内力峰值增量最大值约170%,箱梁内力峰值增量最大值约75%;地震加速度、桥墩入水深度是影响动水压力的重要因素.  相似文献   

3.
高速铁路桥梁建设发展迅速,随之而产生的桥梁支座更换工作也越来越多。桥梁支座更换最常用的方法是梁体顶升法,施工时必须对梁体结构的变形及应力状态进行控制。主要阐述了桥梁支座更换方案及梁体顶升过程的模拟分析,给出了三跨连续梁不同墩顶竖向位移对梁体线形及内力的影响,从而根据规范要求,确定顶升的位移控制限值及对应梁体混凝土应力限值,并作为施工的依据,施工监测数据与结构分析数据取得一致,保证了支座更换的顺利完成。  相似文献   

4.
合理的支座更换方法能确保支座病害突出的桥梁经维护后重新安全运营,若能在行车状态下并在较短的时间内完成支座更换,则能减少更换支座施工期间对交通运行的影响,本文提出一种单墩顶升梁体的更换方法,并以广西省某高速公路内27座桥梁行车状态下支座更换施工为例,结合检测和桥梁建养史调查,采用有限元分析取得梁体各位置的现有应力等桥梁服役状态的基础数据,然后对行车状态下不同顶升值下单墩顶升梁体时不同工况进行分析,对比各工况梁体内力和关键控制截面应力后进行优化,得出桥梁在梁体现有应力储备适当的情况下,在行车状态下采用单墩顶升并辅助合理的交通管制,可以在对梁体无损害、交通影响小的情况下完成桥梁支座更换。  相似文献   

5.
桥梁伸缩缝结合件破坏原因分析及防治   总被引:2,自引:0,他引:2  
在气温变化、混凝土收缩、荷载作用.桥梁墩台的沉降及徐变等因素影响下,桥跨结构会产生变形,从而使梁端产生位移。为适应这种位移并保持桥上行驶车辆的平顺性.就必须在桥面的两梁端之间以及梁端与桥台背墙之间设置横向伸缩缝。车流量、车速、车辆荷载不断提高以及施工中遗留的问题使伸缩缝结合件的病害和损坏非常普遍。桥梁伸缩缝结合件的损坏,不仅使车辆行驶其上时颠簸不止,噪声扰人.是桥梁的服务水平降低,而且危及桥梁的安全。伸缩缝装置损坏后.渗水不但侵蚀梁体.而且也使支座锈蚀.影响梁体的正常伸缩.从而使梁体的有关结构承受的应力比设计应力大得多。  相似文献   

6.
介绍了厦门仙岳路总重量约80 000 kN的4×35 m单箱五室预应力混凝土连续弯箱梁桥顶升改造的关键技术,原桥梁位于R=600 m的平曲线和R=2 500 m的竖曲线上,两端高差达3.76m,为适应全程高架的接线要求,最大顶升高度3.615 m,结合施工千斤顶的行程限制以及全三维有限元顶升仿真精细分析成果,确定将最大顶升高度以及桥梁整体上的两次平动和一次转动分解为39个顶升控制步实施,并给出了顶升过程位移和梁体拉应力增量的安全预警值,利用精度为1/100mm的光栅尺控制桥墩支座附近的竖向顶开位移、1με的应变传感器控制混凝土关键部位的拉应力增量,解决了顶升过程梁体旋转轴的漂移问题、桥梁整体纵横向滑移问题以及顶升点混凝土局部应力安全等一系列问题,经过17天的奋战,梁体安全达到了设计位置.本文研究方法与所得结论可为既有桥梁的顶升改造提供借鉴.  相似文献   

7.
为了探明调谐质量阻尼器(TMD)对冰击荷载作用下桥梁振动的抑制效果.以桥梁横向位移方差为减振评价指标,基于传递函数法、动能理论和模态分析法,确定了TMD的最优刚度、阻尼和最佳安装位置;采用有限元法建立了流冰-桥墩撞击模型,计算获得了流冰撞击力;通过分析不同质量比TMD下桥梁结构的动力学响应,研究了TMD对流冰撞击下桥梁的振动抑制特性.结果表明:采用有限元法计算的流冰撞击力峰值与规范计算结果基本吻合;流冰撞击桥墩引起的桥梁跨中和墩顶横向位移主频与桥梁二阶横向模态接近,TMD的最佳安装位置为墩顶处;TMD对冰击荷载作用下桥梁跨中和墩顶横向位移有较大的抑制作用,且对桥梁横向振动加速度也有一定的减振效果.  相似文献   

8.
桥梁支座更换施工过程中其梁体受到下部的顶升力和上部的车辆荷载以及梁体本身自重等多因素的影响,梁体顶升过程中梁体的位移、应变(应力)的变化必须可知、可控。通过对某桥板梁位移、应变的监控来了解位移、应变的变化情况,指导工程施工。  相似文献   

9.
旧桥拓宽中拼接形式对旧桥受力的影响分析   总被引:1,自引:0,他引:1  
结合合宁高速公路上一座连续刚构梁桥,应用空间有限元方法,分析了横向采用不连接、铰接、刚接等拼接方式时,汽车荷载作用下旧桥挠度、应力的变化及翼缘板根部应力状态。通过分析认为横向拼接有利于增大桥梁结构的整体刚度,减小旧桥挠度与梁体应力。随着拼接刚度增大,翼缘板悬臂根部应力变化较为复杂。  相似文献   

10.
为了研究梁体横向偏位对截面不对称PC (prestressed concrete)开口薄壁梁顶推施工的影响,并提出合理纠偏阈值,以世界首例顶推施工的不对称截面槽形梁——天津第二大街跨津山铁路立交工程为背景,利用有限元软件ANSYS建立实桥模型,研究槽形梁在最不利状态下未发生横向偏位时受力状态,在此基础上以满足安全落梁的横向偏位距离为最大偏位距离,分析不同横向偏位方式对梁体受力的影响. 研究结果表明:槽形梁在未发生偏位时横截面受力不均衡,而平动向右偏位方式加剧受力的不均衡;梁体以最不利偏位方式偏移96 mm后,槽型梁整体内力变化值较小,且下一步顶推后可以安全落梁. 因此,认为顶推施工中,横向偏位纠偏阈值可适当放宽至96 mm.   相似文献   

11.
为研究适应连续梁桥上单元板式无砟轨道的最大温度跨度,采用有限元方法建立了线-板-桥-墩一体化计算模型,分析了在不同轨温变化幅度下,桥梁伸缩、墩顶水平位移及列车制动荷载对桥上单元板式无砟轨道无缝线路温度跨度限值的影响.研究结果表明:温度跨度限值随轨温变化幅度的增加而降低;为保证钢轨强度、横向压弯变形及钢轨与轨道板相对位移等满足要求,当考虑桥梁伸缩时,以轨温变化40 ℃为例,其适应的温度跨度限值为271 m;随着墩顶水平位移的增加,桥梁温度跨度限值显著降低,当墩顶位移为30 mm时,温度跨度为237 m,当高墩桥梁墩顶位移超过30 mm时,应结合实际墩顶位移计算温度跨度限值;制动荷载下线路坡度对温度跨度限值影响较小,当线路坡度为20‰时,桥梁温度跨度限值为258 m.   相似文献   

12.
为研究横向和竖向温度梯度对桥上CRTSⅡ型板式无砟轨道纵向力学特性的影响,以梁-板-轨相互作用原理为基础,建立大跨度连续梁桥上 CRTSⅡ型板式无砟轨道无缝线路空间精细化有限元模型,计算了轨道板竖向温度梯度和阴阳面横向温度梯度荷载作用下各轨道和桥梁结构的纵向力和位移. 结果表明:在其他温度荷载相同的情况下,轨道板竖向温度梯度对钢轨的纵向力和位移影响不大;当阴阳面横向温度差为10 ℃时,连续梁上背阴侧钢轨最大的纵向力是向阳侧的1.4倍,背阴侧桥墩最大的纵向力是向阳侧的3.5倍;在横向温度梯度作用下,钢轨纵向附加力由梁体伸缩和扭曲变形共同作用产生,横向温度梯度越大,背阴侧钢轨纵向力、位移最大值越大,向阳侧钢轨纵向力、位移最大值越小;横向和竖向温度梯度的存在不利于轨道和桥梁结构安全使用,因此,在高温差地区设计东西走向的大跨度桥上无缝线路需重点关注钢轨、轨道板和桥梁墩顶受力,并且对无缝线路的横向稳定性进行验算.   相似文献   

13.
针对桥墩温度梯度引起的桥上CRTSⅡ型板式无砟轨道纵向附加力与变形, 以梁-板-轨相互作用原理和有限元法为基础, 建立了多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型, 详细考虑了钢轨、轨道板、CA砂浆、底座板及桥梁等主要结构和细部结构的空间尺寸与力学属性; 采用单位荷载法计算了桥墩纵向温差作用引起的墩顶纵向位移, 分析了墩顶位移影响下桥上无砟轨道无缝线路纵向力与位移的分布规律。分析结果表明: 当各墩顶发生均匀位移时, 多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路纵向力分布规律及其最大值一致, 且随着墩顶均匀位移的增加而线性增大, 轨板相对位移峰值均出现在两侧桥台、台后锚固结构末端以及第2跨和最后一跨固定支座墩顶处; 当墩顶均匀位移为5 mm时, 多跨简支梁桥和大跨连续梁桥上钢轨最大纵向力分别为79.62和79.54 kN, 最大纵向位移分别为4.94和4.91 mm, 轨板最大相对位移均为0.23 mm; 当各墩顶发生不均匀位移时, 钢轨纵向力及轨板相对位移均在邻墩位移存在差异处发生突变, 多跨简支梁桥上固结机构纵向受力大于大跨连续梁桥; 对于高墩桥梁, 需重点关注相邻墩身高差最大处的轨板相对位移、底座板与桥梁相对位移及固结机构的纵向受力。   相似文献   

14.
为研究水体对桥墩结构振动特性的影响,以ANSYS为计算平台,建立了桥墩-水流固耦合有限元模型,计算了不同几何尺寸和淹没比情况下桥墩的自振频率,分析了桥墩在高速列车作用下,不同水深对其振动特性的影响。分析后得出结论:当水体深度小于墩高50%时,桥墩的自振频率降低不明显;当水体高度大于墩高50%时,桥墩自振频率出现明显降低。高速列车作用下,桥墩墩顶纵向位移出现极值的时间,随淹没比的增加向后推迟;桥墩墩顶纵向加速度随淹没比的增加而增加。因此,高速列车作用下,水体对于涉水铁路桥梁桥墩的自振与动力振动特性有着明显的影响,且这种影响不可忽视。  相似文献   

15.
为保障高速铁路桥墩沉降区域的列车运行安全平稳性,提出了一种基于列车-轨道-桥梁动力相互作用理论的高速铁路桥墩沉降控制阈值研究方法;探讨了既有标准中的桥墩沉降限值,并确定了影响桥墩沉降控制阈值的关键因素;基于列车-轨道-桥梁动力相互作用理论,考虑轨道随机不平顺、轮轨非线性接触关系等非线性因素,建立了考虑桥墩沉降和多影响因素的高速列车-轨道-桥梁耦合动力学模型;在此基础上,研究了多因素条件下桥墩沉降对列车-轨道-桥梁系统的影响,并从保证列车安全平稳运营的角度提出了适用于中国高速铁路桥墩沉降的控制阈值。研究结果表明:研究高速铁路桥墩沉降控制阈值时不能忽略轨道随机不平顺、温度作用、混凝土收缩徐变等因素的影响;随着桥梁跨度的增大,混凝土收缩徐变和温度作用导致车体垂向加速度和轮重减载率增大,桥墩沉降则导致上述指标减小;考虑多因素后,车体垂向加速度和轮重减载率与不考虑这些影响因素相比明显增大;随着桥墩沉降的增大,列车通过不同不平顺样本时车体垂向加速度和轮重减载率均超标;为保证列车运行安全性与乘坐舒适性,高速铁路桥墩沉降控制阈值建议为10 mm;在本文得到的控制阈值基础上进一步考虑施工误差等其他因素即可得到准确的标准限值,研究结果可为桥墩沉降限值的最终确定提供研究方法和数据支撑。   相似文献   

16.
李德墉 《交通标准化》2009,(11):117-120
为解决独桩独柱墩悬灌梁桥0#块支架搭设问题。可在预埋牛腿上架设双悬臂梁的受力体系,该方法适用于窄幅悬臂灌注桥,整个支架结构受力明确,装拆方便,对类似结构桥梁的施工有一定的参考价值。  相似文献   

17.
为获得大跨高墩长联桥上无缝线路设计的控制因素,探讨了大跨高墩长联桥墩台线刚度的合理取值.基于桥上无缝线路力的传递机理,建立了钢轨-主梁-桥墩-基础一体化力学模型;利用APDL参数化语言对ANSYS进行二次开发,建立了参数化优化模型,编制了桥墩线刚度优化程序.结合实际工程,分析了跨度64 m的有碴轨道简支梁桥墩顶纵向水平线刚度的限值.分析结果表明:梁轨快速相对位移及钢轨附加应力控制大跨高墩长联桥上无缝线路的整体设计, 该跨度为64 m的有碴轨道简支梁桥墩顶纵向水平线刚度的限值应超过750 kN/cm.   相似文献   

18.
桥梁结构在荷载作用下的静力非线性与结构动力特性之间的关系是结构损伤识别领域的重要问题。基于高速铁路模型箱梁的重复荷载试验,采用平面非线性有限元分析方法对静力非线性和动力损伤之间的关系进行了研究。通过定义混凝土等效应力-等效塑性应变曲线来定义其弹塑性行为。对数值模型加载到各级荷载后卸载进行动力特性分析,即卸载后计算自振频率和振型。计算结果表明:采用平面非线性有限元分析方法可以比较准确地对箱梁模型进行非线性分析,除了初始模型刚度存在一定误差外,结构的骨架曲线的特征值、加卸载刚度和残余位移吻合较好。在进行非线性分析后进行动力特性是分析可行。竖向频率值的变化能够反映静力非线性发生后结构的损伤出现和损伤的发展规律,这为结构动力损伤识别提供了有效的途径。  相似文献   

19.
重庆万州大桥为钢管混凝土桁架变截面连续刚构,主墩为双肢薄壁高墩。采用CivilMidas2010模拟重庆万州大桥7#墩右侧距地面填土20m外,分析土压力对钢管混凝土桁架连续刚构桥墩及全桥的影响。结果表明土压力对桥梁上部结构影响较小,但会使桥墩弯曲产生裂缝,增加系梁的拉应力。  相似文献   

20.
桥梁温度跨度对CRTSⅡ型板式无砟轨道无缝线路的影响   总被引:2,自引:0,他引:2  
为探索桥上CRTSⅡ型板式无砟轨道的桥梁温度跨度的合理限值,运用线板桥墩一体化模型计算了不同温度跨度下钢轨制动力和伸缩力,基于弹性点支承梁理论分析了桥梁温度跨度对钢轨强度的影响,运用屈曲有限元分析了桥梁温度跨度对无缝线路稳定性的影响,根据钢轨与轨道板的相对位移分析了桥梁温度跨度对扣件耐久性的影响。结果表明,为保证无缝线路强度、稳定性及扣件耐久性,桥梁温度跨度的合理限值为482 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号