首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 542 毫秒
1.
梁冠 《铁路技术创新》2011,(Z1):126-127,129
1 CTCS-3级运行中与GSM-R的DSU模块相关的问题武广高速铁路运行的是我国自行生产、拥有完全自主知识产权的CRH2和CRH3型"和谐号"高速列车.在CTCS-3级列控系统控制下,列车能以350 km/h平稳运行,行车间隔可达3min.CTCS-3级列控系统通过信号无线闭塞中心(RBC)设备实现,而保证RBC设备向动车发送CTCS-3级控车交互信息的则是GSM-R系统.移动交换中心( MSC)作为GSM-R系统中电路域的核心,一方面通过有线方式连接RBC设备,采用PRI信令;另一方面连接无线子系统,从无线侧获取动车车载OBC设备消息,使RBC与OBC间实时信息交互,实现CTCS-3级控车.  相似文献   

2.
CTCS-3级列控系统通过GSM-R无线网络实现车地信息传输,无线传输功能直接关系着CTCS-3级列控系统是否能够正常工作。通过对CTCS3-300T列控车载无线系统的分析和无线故障案例研究,总结CTCS3-300T列控车载设备侧无线故障的原因,并提出相应的预防建议。  相似文献   

3.
列车运行控制系统(简称列控系统)是客运专线和高速铁路列车运行的关键技术设备.列控系统主要包含两个方面,一方面为地面控制技术,另一方面为车载控制技术,即通过地面提供信息,车载实现自动控制功能.京沪高铁采用CTCS-3级列控技术,其列控车载设备为CTCS-3级列控车载设备.CTCS-3级基于GSM-R无线传输信息,并采用轨道电路等方式检查列车占用的列车运行控制系统.列控车载设备与其配套的地面列控系统实时进行通信,完成地面与列车之间的信息交汇,从而保证高速运行列车安全平稳运行.  相似文献   

4.
CTCS-3级列控系统通过GSM-R无线网络实现列车与地面无线闭塞中心(RBC)之间的双向信息传输,还具备CTCS-2级列车运行控制功能.CTCS-3级列控系统的GSM-R系统设计要求实现GSM-R车载网络接入终端设备,该设备应满足列车在350 ~ 400 km/h运行时速下,最高9600 bit/s的列车安全数据与地面RBC间的实时双向传输[1],同时要求数据传输链路实现无缝连接,数据传输安全、可靠、实时.  相似文献   

5.
列车运行控制系统(简称列控系统)是客运专线和高速铁路列车运行的关键技术设备。列控系统主要包含两个方面,一方面为地面控制技术,另一方面为车载控制技术,即通过地面提供信息,车载实现自动控制功能。京沪高铁采用CTCS-3级列控技术,其列控车载设备为CTCS-3级列控车载设备。CTCS-3级基于GSM-R无线传输信息,并采用轨道电路等方式检查列车占用的列车运行控制系统。列控车载设备与其配套的  相似文献   

6.
1概述郑西高速铁路是我国中长期铁路规划中徐兰客运专线(徐州-郑州-西安-宝鸡-兰州)最先开工的一段,2009年底正式开通试运营.郑西高速铁路设计速度350 km/h,无线通信平台采用GSM-R数字移动通信系统,并采用基于GSM-R的CTCS-3级列控系统指挥行车.基于GSM-R的CTCS-3级列控系统将实现350 km/h,3min追踪间隔的高速运行.GSM-R网络是CTCS-3级列控系统车-地通信的基础平台,可在铁路沿线的车站、隧道、山区、丘陵等各种地形、地貌条件下提供连续无缝的网络服务,在这些区域的任意两点间能完成双向信息交互.CTCS-3级列控系统车载ATP和地面RBC之间利用GSM-R网络进行双向命令与状态信息交互,完成列车位置跟踪、移动授权、紧急停车、临时限速等关键信息的传送.CTCS-3级列控系统对GSM-R网络的可靠性和可用性提出了非常苛刻的要求.GSM-R网络要为CTCS-3级列控数据传输提供安全可靠的通道,无线网络优化尤为重要,GSM-R无线网络只有持续优化,才能满足CTCS-3级列控系统对其QoS指标要求,使列控数据安全可靠传递.  相似文献   

7.
对高铁场景下影响GSM-R系统信息传输性能的因素进行仿真,结合通信系统不可靠触发列控系统故障处理的机制,对GSM-R系统承载列控信息传输性能进行分析,定量给出列车行驶到不同位置时列控系统故障发生的概率和严重性.  相似文献   

8.
CTCS-3级列控系统是"十一五"科技支撑计划"中国高速列车关键技术研究及装备研制"项目的重要研究内容之一.CTCS-3级列控系统的重要特点之一是采用GSM-R数字移动通信系统传输车-地双向列控数据,GSM-R车载通信系统是CTCS-3级列控系统的重要组成部分,其结构见图1.由图1可知,无线传输模块( RTM)中的通信控制单元与列车超速防护系统(ATP)通过多功能车辆总线( MVB)进行通信.MVB-类设备集成在RTM通信控制单元中,具有UART和MVB 2个通信接口:UART接口负责与通信控制单元中的主控制器通信;MVB接口负责与ATP设备通信,实现RTM通信控制单元与ATP设备间的通信.  相似文献   

9.
基于多分辨率建模和高层体系结构,对CTCS-3级列控系统进行仿真研究。根据CTCS-3级列控系统的结构,选择无线闭塞中心(RBC)、列控中心(TCC)、应答器信息传输模块和车载安全计算机4个关键模块组成控车模型。采用多分辨率建模方法,根据信息交互细节层次的不同,将控车模型中的不同模块划分为低、中、高3种分辨率模块。应用HLA仿真技术,构建控车模型中联邦对象模型和成员之间的属性公布与订购关系,应用RTI软件实现控车模型的仿真过程。实现了如下仿真场景:控车模型联邦与RTI软件的连接与退出;不同分辨率情况下的RBC与TCC信息交互生成行车许可;车载安全计算机绘制计算目标距离曲线;列车行驶视图显示。仿真结果验证了多分辨率建模方法在CTCS-3级列控系统仿真中的可行性。  相似文献   

10.
随着运营速度达到了350km/h的郑西、武广铁路开通运行,中国铁路进入了高速发展时期,列控也进入了CTCS-3级基于通信的列控时代。CTCS-3级列控系统RBC(Radio Block Center)子系统是铁路信号列车控制中一个基于无线通信的实时控制系统,其控车功能是CTCS-3级列控系统的核心组成部分。在高速铁路线上,所有高速列车的运行均由无线闭塞中心RBC控制。本文针对列车异常呼叫LKDR-S型RBC的特殊场景进行了分析。  相似文献   

11.
CTCS-3级列控系统是动车组列车的主要行车设备,GSM-R(铁路综合数字移动通信系统)为CTCS-3级列控系统进行车-地数据交互提供重要网络通道。以郑西高铁发生的1次CTCS-3级无线连接超时故障为例,分析了GSM-R基站电路传输误码对CTCS-3级列控系统数据传输的影响,并针对基站存在的安全隐患提出了解决方案。  相似文献   

12.
GSM-R网络系统包括GSM-R网络和GSM-R终端,可提供数据通信、话音通信和短消息等业务。为满足铁路运输需求,CTCS-3级列控系统(简称C3)采用GSM-R网络实现车-地控车信息的双向无线传输。目前,GSM-R网络采用电路交换方式承载C3业务,为C3数据分配专用信道。GSM-R网络与C3接口关系见图1[1]。  相似文献   

13.
武广高铁是双线高速铁路,采用基于GSM-R无线通信平台的CTCS-3级列控系统,车载ATP与地面RBC之间通过GSM-R网络进行列控安全数据双向传输.车-地间数据信息传输可靠性直接关系到高速列车的行车安全和运输效率,车-地间通信中断或无法正确接收数据,列车控制系统会自动由CTCS-3级降为CTCS-2级,速度减至300km/h以下,会对全线列车正点率、运行调度、行车秩序造成极大影响.CTCS-3级降为CTCS-2级的原因多种多样,采取何种手段分析CTCS-3降级的异常现象,进而找到原因,减少甚至避免此类现象发生是铁路管理部门和维护部门的目标.  相似文献   

14.
CTCS-3级列控系统行车许可是保证高速列车安全运行的关键信息,及时准确地为辖区内列车计算和发送行车许可是RBC(无线闭塞中心)子系统的主要功能之一。在分析CTCS-3级列控系统不同运营场景下行车许可生成机制的基础上,采用层次化描述思想,建立基于CPN(有色Petri网)的RBC行车许可生成模型,并运用动态仿真和状态空间分析工具对模型进行了仿真分析。结果表明,所建模型能够满足不同运营场景下计算行车许可的要求,无死锁,并具有活性、回归性和公平性,为分析列控系统性能提供了很好的试验平台。  相似文献   

15.
基于GSM-R的CTCS-3级列控系统安全数据传输通信协议栈分析   总被引:1,自引:0,他引:1  
基于开放系统的安全数据传输理论,分析了开放传输系统的特点和应对策略,针对CTCS-3级列控系统安全数据传输,从数据链路层和传输层的角度探讨了用GSM-R来承载CTCS-3级列控安全数据传输时在协议方面所采取的差错控制、防止非授权接入等措施,在分析的基础上,给出了基于GSM-R开放系统的CTCS-3级列控系统连接建立详细过程。  相似文献   

16.
基于GSM-R网络实现车地信息传输的CTCS-3级列控系统在国内取得快速发展,现场运用中发现,无线超时是影响CTCS-3级列控系统运用质量的一类主要问题。从无线超时的原因分类出发,结合目前在用的接口监测系统,以及新加装的Datalogger和Um接口监测设备,以一些典型问题为例,详细介绍无线超时问题的分析方法,对指导无线超时问题的分析解决,提高CTCS-3级列控系统的运用质量,具有重大现实意义。  相似文献   

17.
随着我国经济的快速发展,高速铁路的运输能力要求不断提高。目前我国高速铁路装备CTCS-2/3级列控系统,采用准移动闭塞方式。CTCS-4级列控系统取消轨道电路,通过地面和车载设备共同完成列车定位,能够实现移动闭塞,进一步缩短行车间隔。但是,我国高速铁路一直基于轨道电路实现列车占用检查,干线铁路也未有取消轨道电路的列控系统运用。通过分析现阶段CTCS-4级列控系统面临的问题,提出一种基于CTCS-3级列控系统的高速铁路移动闭塞实现方案,并阐述该方案的系统总体结构和基本工作原理。方案中列控地面子系统综合利用列车位置报告和轨道电路信息,保证了移动闭塞的运输效率。同时给出了一种移动闭塞方式下行车许可的计算方法,并通过建模和运营场景进行验证,为我国高速铁路移动闭塞的实现提供参考。  相似文献   

18.
CTCS-3级列控系统作为对高速运行动车组实施目标-距离连续速度控制的系统,由无线闭塞中心生成行车许可、GSM-R无线网络实现车-地信息双向传输。基于CTCS-3级列控系统特点,在施工及试验时与传统信号相比有很大不同,本文重点分析C3列控系统施工及动态试验方案。  相似文献   

19.
为解决当前高校在CTCS-3级列控系统教学中缺乏信号设备实物的问题,采用软件仿真的形式,建立适用于本科教学的CTCS-3级列控仿真实验系统。重点研究了CTCS-3级列控仿真实验系统中的轨旁仿真子系统,以轨道电路、应答器、站内信号机、站内道岔等轨旁设备作为研究对象,提出了CTCS-3级列控轨旁仿真子系统的总体设计方案,阐述了内部核心功能的详细实现,介绍了系统的工作流程。该子系统与CTCS-3级列控仿真实验系统中其他仿真子系统进行了联调,实现了既定的功能需求。结果表明,该轨旁仿真子系统能够较好地配合CTCS-3级列控系统,实现教学的目的。  相似文献   

20.
基于SPN的CTCS-3级列控系统RBC实时性能分析   总被引:2,自引:0,他引:2  
梁楠  王海峰 《铁道学报》2011,33(2):67-71
RBC(无线闭塞中心)实时性能指标是影响CTCS-3级列控系统运行的关键要素。本文将随机Petri网和马尔可夫随机过程理论结合起来,提出一种新的系统性能分析方法,剖析CTCS-3级列控系统的运行机制,建立RBC子系统周期处理和非周期处理的随机Petri网模型,并利用ERTMS/ETCS的参考数据,分析GSM-R通信环境下RBC的实时性能,在不同系统周期和列车交互数量下得出RBC子系统平均延时曲线。本文对我国CTCS-3级列控系统的规范制定和系统开发具有一定的借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号