首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为了研究砂土液化大变形对地铁车站结构产生的重要影响,使用 FLAC3D,采用 PL-Fin 土体液化本构模型,总结了地下结构位于可液化土层时,液化土层从液化初始到产生液化大变形时刻,土体液化、结构位移变形和结构周围土体应力与结构应力变化规律,并与非液化场地下的地下结构地震反应进行了对比。主要结论有:地铁车站结构从底部开始液化,引起两侧土体的移动和结构的倾斜上浮;由于结构两侧土体液化较轻微,结构左侧墙临近土体应力及结构应力在液化和非液化场地中的变化规律比较类似,底部土体液化较严重导致液化地层中结构底板及底板相邻土体应力变化同非液化土层存在较大差异。  相似文献   

2.
为了研究砂土液化大变形对地铁车站结构产生的重要影响,使用 FLAC3D,采用 PL-Fin 土体液化本构模型,总结了地下结构位于可液化土层时,液化土层从液化初始到产生液化大变形时刻,土体液化、结构位移变形和结构周围土体应力与结构应力变化规律,并与非液化场地下的地下结构地震反应进行了对比。主要结论有:地铁车站结构从底部开始液化,引起两侧土体的移动和结构的倾斜上浮;由于结构两侧土体液化较轻微,结构左侧墙临近土体应力及结构应力在液化和非液化场地中的变化规律比较类似,底部土体液化较严重导致液化地层中结构底板及底板相邻土体应力变化同非液化土层存在较大差异。  相似文献   

3.
以某上盖6层框架结构的大底盘地铁车站工程为研究背景,基于有限元软件Midas GTS-NX,建立土体-大底盘地铁车站及其上盖单塔框架结构体系的三维数值模型,分析上盖框架结构对大底盘地铁车站结构地震动力响应的影响。结果表明:在输入地震动作用下,上盖框架结构的存在增大了地铁车站结构的内力,且上盖结构层数越多,内力增幅越大;车站柱子与上盖框架结构相距越近,其弯矩幅值越大、剪力幅值越小;车站柱子横截面弯矩幅值沿柱高方向呈近似"W"形分布,车站顶板和底板弯矩幅值沿车站横向均呈锯齿状分布,但底板弯矩极值分布较均匀,车站侧墙最大弯矩发生在底部区域;车站发生的变形仍为剪切型,上盖结构的存在只改变其相对位移峰值大小,而未改变其变形模式;车站柱子的振动峰值加速度自下而上逐渐增大;对大底盘地铁车站及其上盖结构体系中的地下结构进行抗震设计时,无须考虑上盖结构对地下结构惯性力改变的影响。  相似文献   

4.
针对目前地铁区间隧道建设中常见的单层双跨断面形式结构,开展饱和地基土自由场、结构整体位于可液化土层、结构底部存在可液化土层、结构位于非液化土层共4种工况下的振动台试验;通过分析地基土的宏观表现、位移响应、动土压力响应以及结构位移响应,研究可液化土层分布对土-地下结构地震响应的影响。结果表明:受输入地震动正负波幅值不对称和地基土不均匀震陷影响,地基土表层的喷砂、开裂、冒水现象表现出不均匀性,结构上浮会加剧液化现象的不均匀性;土体液化造成结构上浮和地基土沉降,使二者产生相对位移,当相对位移较大时土体易出现较大贯通裂缝,使得超静孔压消散,液化现象得以缓解;地基土水平向位移在结构底部存在可液化土层工况时最大,在结构整体位于可液化土层工况时次之,在结构位于非液化场地工况时最小;可液化土作用在结构上的动土压力大于非液化土,导致结构整体位于可液化土层时上浮较大,仅底部存在可液化土层时会加大结构侧墙顶底动土压力差。  相似文献   

5.
研究目的:为更加全面地探讨软土场地中地铁车站结构地震动力响应特性和灾变机理,分析软基土性参数变化对土体特征点处动孔压比、地铁车站结构特征位置处内力等动力响应指标变化影响规律,本文采用两相介质动力分析方法和多指标综合平衡法对饱和软土地基-地铁车站结构动力相互作用体系进行数值分析与参数敏感性分析,旨在为认识地铁车站结构地震动力灾变机理提供参考。研究结论:(1)结构底板附近存在环状动孔压比峰值区域,引起两侧远场土体向内部侧向流动,对结构底部产生挤压上抬作用;(2)结构体系中底板、剪力墙下端和中柱为受力破坏薄弱部位;(3)软基土性因素中黏聚力对典型动力响应指标影响最为显著,参考体积模量次之;(4)该研究成果可用于指导软土地基地铁车站结构抗震设计。  相似文献   

6.
研究目的:结合太原地铁2号线设计过程中遇到的大范围饱和砂土地震液化地层,分析液化地层对地下结构的作用机理,以发生地震液化后保证结构安全为目的,借助于理论解析、数值模拟与模型试验相结合的手段,揭示液化后地层对地下结构的不利影响,并提出相应的控制措施,进行相应的针对性设计。研究结论:(1)明挖围护结构可与底板以下非液化土层形成一个封闭围合结构,仅需对结构底板及以下的液化砂层进行处理;(2)盾构隧道具有一定柔性,易受地震液化影响,液化砂层位于洞身及以下范围时,地层发生液化对结构内力及变形影响较大,需对该部分液化砂层进行加固处理;(3)其他情况,只需在结构设计中考虑发生液化时的附加应力影响;(4)该研究成果可作为大范围地震液化地层条件下的地下结构设计的参考。  相似文献   

7.
研究目的:对某大型地铁车站深基坑开挖过程中的软弱场地变形监测结果进行了统计分析,对基坑开挖引起的地面沉降、墙体水平位移和立柱桩体沉降的时空变化规律进行了整体分析,尤其是对不同基坑开挖深度对基坑变形速度的影响规律进行了总结。相关的结论和建议对城市软弱地基内地铁车站深基坑的变形监测方案设计、施工组织设计和施工安全控制等都具有一定的参考价值和指导意义。研究结论:(1)在深软场地深基坑开挖完成后地铁车站主体结构施工过程中拆撑可能造成地面的沉降比基坑开挖过程中产生的累积沉降还要大,应加强地铁主体结构施工过程中地面的沉降观测;(2)基坑侧壁水平累积位移与每次开挖土层厚度及其土层性质关系密切,随着开挖土层埋深的增大,基坑侧壁水平累积位移累积速度明显加快;(3)当基坑开挖深度有较大差异和基坑底部土层厚度分布极不均匀时,应考虑验算立柱桩的差异沉降;(4)软弱场地深基坑工程开挖引起的场地变形时空效应非常明显,随着开挖的进行,应沿纵向按限定长度逐段开挖,在每个开挖段分层、分小段开挖。  相似文献   

8.
选取典型砂土场地地铁车站,分别采用反应位移法、反应加速度法、有限元动力分析法对其在地震作用下的结构内力进行计算,分析不同抗震计算方法在地铁车站抗震设计中的适用性。结果表明:对于砂土场地地铁车站,3种抗震计算方法所得的结构内力最大值位置基本一致,最大弯矩、最大剪力均出现在侧墙底部与底板端部,最大轴力均出现在中柱底部与侧墙底部;反应加速度法计算结果与有限元动力分析法更为接近,反应位移法计算结果与有限元动力分析法相差较大,宜采用反应加速度法进行砂土场地地铁车站等地下结构的抗震计算。  相似文献   

9.
针对厦门地铁2号线吕厝站车站深基坑出现的地下连续墙及周边地表变形超限问题,结合现场监测及基坑加固手段,提出了相应处理措施并取得了较显著效果。结果表明,吕厝站基坑变形过大主要由于基坑深度大,支撑体系变形后应力损失、地下水变化明显、受施工场地及周边活动荷载影响,致使地下连续墙局部位置变形量及变形速率均超出限值,同时地表竖向位移变形速率也超出规定要求。通过加强基坑支护结构,优化基坑内施工方法,并置换坑底软弱土体和加快封底速度,有效减缓了地下连续墙及周边地层变形,其中地下连续墙最大变形速率由9.83 mm/d减小至1 mm/d左右;地表竖向位移最大变形速率由4 mm/d减小至1 mm/d以下,确保了变形超标深基坑的施工安全。  相似文献   

10.
基于ABAQUS软件研发的显式有限元并行计算集群平台,建立三拱立柱式地铁地下车站结构三维精细化有限元分析模型;研究大地震近场和远场地震动作用下地铁地下车站结构三维非线性地震反应特性.结果表明:地震作用下,三拱立柱式车站立柱底部为最危险部位,两侧副拱较中间主拱安全;两侧副拱拱璧损伤没有框架式车站结构外墙损伤严重;两侧副拱与竖向轴夹角约为30°处上、下拱壁上损伤指数最大;地铁地下车站结构峰值加速度沿车站纵轴线方向呈波浪状,纵轴线中点附近峰值加速度最大;三拱立柱式地铁车站的破坏主要和结构相对位移角有关,其破坏模式主要为剪切破坏.  相似文献   

11.
饱和砂土地层的盾构隧道可能因液化影响产生变形及内力变化引起隧道破坏,地层液化对叠落隧道的影响可能因结构间的相互影响而加剧.基于工程实例,采用有限元分析软件Midas GTS建立三维模型,对可液化地层叠落隧道进行水平和竖向抗震动力时程分析,分析了液化地层在隧道不同位置以及不均匀分布情况对隧道的不同影响,对液化与非液化情况的隧道结构内力及变形进行对比,研究了地层加固对液化地层的处理效果.液化情况下隧道内力及变形均有一定程度的增加,其中液化地层处于隧道底部、液化地层分布不均匀对隧道影响程度较大,竖向地震作用主要影响隧道的竖向变形.综合考虑多种加固方案,中等液化程度时盾构隧道采用径向注浆加固地层有较好的效果.  相似文献   

12.
目前现行规范对层状体系的铁路路基基床结构的应力应变计算采用等效厚度法,按Boussinesq公式进行计算,等效厚度法采用Odemark模量与厚度当量假定,将路基上不同模量的厚度土层折算成与路基下部填料同模量的等效层厚,该方法并没有很好反映不同土层材料性质之间的差异,对高模量的道砟层、基床表层、基床底层在路基应力场分布中的作用,缺乏严密的理论依据。针对重载铁路路基4层结构体系,采用基于传递矩阵的层状理论分析方法针对其不同深度处的应力变形求解。通过均质土层的计算结果与Boussinesq公式的理论结果的比较,验证了传递矩阵法及其计算程序可行性,最后为了进一步说明该方法的合理性,对比有限元和传递矩阵法的计算结果,结果表明,二者吻合较好。  相似文献   

13.
含水率对昔格达地层大断面隧道初期支护安全性影响研究   总被引:1,自引:1,他引:0  
昔格达地层具有水稳性差、易崩解等特点,常常引发隧道初期支护结构开裂、围岩掉块、坍塌冒顶等灾变事故。为了研究围岩含水率对昔格达地层大断面隧道初期支护安全性的影响规律并及时预防灾变事故,以成昆铁路复线桐梓林隧道为工程依托,通过数值模拟对比分析5种典型围岩含水率下隧道初期支护结构的受力特性和变形规律,根据相关规范规定的洞周变形标准和结构强度安全系数标准界定现有支护参数所能够维持的围岩含水率阈值为29%,并为超过此围岩含水率阈值的隧道支护参数提出优化方案。通过现场监控量测数据验证数值模拟计算结果的可靠性和合理性,研究成果不仅完善了昔格达地层大断面隧道设计参数,同时为类似工程提供借鉴和参考。  相似文献   

14.
拱北隧道是建设在建筑物密集区的软土地层中的宽体隧道。以该隧道海域明挖段超大基坑的基底加固方 式为研究内容,采用数值分析方法,对比分析满堂、裙边及抽条 3 种不同加固方式对基底沉降变形及围护结构受 力变形的影响,为隧道的基底加固方式比选提供参考。计算表明,所选节段满堂加固对基底的沉降及隧道结构的 变形控制效果更佳,对围护结构的受力影响不大;裙边和抽条的加固效果相近。因此,在不同地质条件下不同节 段可以通过数值计算较好地模拟比较不同的隧道基底加固方案对隧道结构稳定性的影响规律,并结合经济性指 标,选择最合理的加固方案。  相似文献   

15.
当隧道斜向上穿越软塑黄土夹层时,隧道拱部逐渐脱离软塑黄土层,使得围岩处于"上硬下软"的二元地层状态。由于软塑黄土含水率高、稳定性差、承载力低,使得大断面隧道在这种二元地层下的变形特征不尽相同。本文依托银西高铁上阁村隧道,基于室内试验、数值计算、现场监测等手段,分析"上硬下软"二元地层下隧道围岩位移演化规律,揭示隧道围岩变形特征。结果表明:随着软塑黄土层的下移,拱顶累积沉降量逐渐减小并趋于稳定;当软塑黄土分布于边墙时,围岩软弱,软塑黄土变形量大,变形时间长;当软塑黄土分布于隧底时,隧底围岩隆起值及下台阶水平收敛较大;随着隧道穿出软塑黄土层,净空收敛逐渐减小并趋于稳定。  相似文献   

16.
基于流固耦合理论下穿库区隧道围岩稳定性分析   总被引:1,自引:0,他引:1  
以某下穿库区铁路隧道为依托工程,对比分析有无渗流场作用和不同水深条件下,隧道结构应力变化规律以及围岩变形、塑性区和渗流场的变化特性,同时还考虑隧道加固圈厚度和渗透系数对围岩稳定性的影响。研究结果表明:地下水渗流场对围岩变形影响较大,不仅能引起大范围的库底沉降,而且能增大隧道拱顶和拱腰的位移,并且能够减小仰拱的隆起量以及加剧围岩塑性区的范围;隧道的开挖能够对地下水孔隙水压力的分布形成明显的扰动,并且在两拱脚处渗流速度最大,最大塑性区位于横向临时支撑处;注浆加固圈能够改善围岩的受力,隧道最优注浆圈厚度在5m,并且当渗透系数小于围岩渗透系数的1/50时注浆圈加固效果不再明显。  相似文献   

17.
研究目的:针对板状高地应力软岩隧道开挖的大变形问题,采用单层初期支护+双层二衬的结构形式进行支护,并进行现场试验,对初期支护、钢拱架以及两层二衬的变形与受力进行了测量,分析该支护结构在控制高地应力软岩隧道大变形方面的效果及该方案的可行性是本文的主要研究目的。研究结论:(1)传统的初期支护方式在控制高地应力软岩隧道的大变形方面效果不佳;(2)板状岩层的走向和岩层的倾角对高地应力软岩隧道开挖后的变形及受力会产生影响,一般来说,在垂直于板状软岩岩层(倾斜线)方向上的挤压力最大;(3)采用双层二衬结构,使初支与围岩一起产生变形而消除围岩的部分压力,第一层二衬起到强而稳定的支护作用并承担绝大部分的围岩压力,使第二层二衬受力很小而起到装饰作用,因此从高地应力软岩长期流变性的角度考虑,双层二衬结构对高地应力软岩隧道建成后的长期稳定性和安全运营具有很好的保障作用;(4)本研究成果可为类似工程的施工提供参考依据。  相似文献   

18.
假设土体在冻结前已固结完毕,冻结过程中土体为具有弹塑性本构特征的各向同性体,土中的水分迁移符合达西定律,且土颗粒不可压缩。在给出冻土温度场、水分场基本方程及冻土弹塑性本构方程后,应用弹塑性有限元法,模拟旱桥施工过程。依次求出旱桥在围岩自重作用下的初始应力场、当前应力水平下围岩的温度场和体积膨胀引起的等效节点荷载,再求出上述荷载增量对应的应力增量和当前的围岩应力场,重复上述计算步骤直到规定年限。本文对青藏铁路旱桥单桩冻胀过程中在未来20年的应力场进行模拟计算,结果表明旱桥仅在靠近桥桩底部产生塑性应变,且塑性应变区很小,该旱桥是安全的。另外,本文提供分析寒区旱桥冻胀的理论与数值计算方法,可为类似工程设计提供参考。  相似文献   

19.
本文针对中老铁路会富莱软岩隧道在施工过程中出现的大变形问题,结合大变形破坏特征,在变形区段对围岩的物理力学性质、区域地应力、围岩松动圈等主要内容开展了试验研究,分析判定了软岩特性及等级,并通过调整支护参数,改善衬砌结构的受力状态,改进施工工艺、方法等工程措施,确保了后续施工的顺利进行。  相似文献   

20.
京张高铁八达岭长城站规模大、结构复杂、施工难度大。为实现车站及大跨过渡段的安全建设,八达岭长城站建立了结合人工智能技术的隧道围岩及结构安全智能监测系统,通过在围岩和结构中预埋传感器,监测地下车站和大跨过渡段的围岩,以及锚杆、锚索等支护结构的受力和变形,并进行自动化采集、实时传输和处理,实现隧道围岩及结构力学状态的可视化实时显示与预警。超大跨隧道结构安全智能监测系统确保了复杂围岩条件下长、大隧道及隧道群的施工期和运营期安全,体现了现场监测信息对施工与设计的指导意义,为类似工程的施工和监测提供了参考与借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号