首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
为在重载钢轨打磨廓形优化设计中最小化钢轨打磨量,建立了打磨量的钢轨廓形对齐及计算方法,设计以轮轨磨耗指数、轮轨接触应力以及钢轨打磨量为优化子目标的综合优化评价模型,并对不同优化策略的优化结果进行了分析. 首先,通过矩阵旋转变换、曲线拟合及样条插值等理论建立钢轨廓形自动对齐算法,并计算目标廓形打磨量;其次,考虑轮轨磨耗指数、接触应力以及钢轨打磨量,建立综合优化目标函数,采用遗传算法并联合车辆轨道动力学仿真模型求解优化钢轨打磨廓形;最后,运用所建立的钢轨廓形优化设计模型计算分析不同优化策略的设计结果. 研究结果表明:同时考虑轮轨磨耗、轮轨接触应力和钢轨打磨量,优化后曲线外、内轨廓形平均磨耗指数相比初始廓形下降68.9%,内轨接触应力下降39.1%,打磨量下降21.8%,优化效果最佳;只考虑轮轨磨耗和接触应力时,优化后曲线外轨廓形磨耗指数和内轨接触应力下降较为明显,但打磨量下降速率相对较慢,仅为11.3%;只考虑打磨量时,优化后钢轨廓形打磨量下降最快,为24.4%,但轮轨接触应力显著变大.   相似文献   

2.
针对过度磨耗钢轨的打磨,提出一种以圆弧切点为关键参数的钢轨廓形设计方法;以轮轨接触位置为优化区域,以钢轨磨耗和打磨材料去除量作为优化目标函数,以廓形边界范围、凹凸性、脱轨系数和轮轨横向力为约束条件,建立磨耗钢轨打磨设计廓形多目标函数;集成多元模拟退火寻优算法进行求解;为了得到能代表重载线路曲线区段的钢轨廓形,作为优化的输入数据,采用最小二乘距离算法、算术平均算法、加权平均算法和散点重构算法得出4种钢轨代表廓形;使用Pearson相关系数、Kendall秩相关系数和Spearman秩相关系数计算出4种算法的钢轨代表廓形与实测廓形接触点概率分布曲线的相关性,取相关性最高的代表廓形为等效重载线路曲线区段的实际廓形;对某重载线路过度磨耗钢轨的经济性打磨廓形以及采用圆弧型廓形设计方法的优化廓形进行分析。分析结果表明:优化廓形与现场打磨廓形相较,截面廓形磨削量减少69.56 mm2,下降64.98%,脱轨系数小幅增大,轮轨横向力基本不变,轮对横移变化较小,曲线通过性能相近,80万次通过量下的磨耗面积增加2.19 mm2,钢轨的磨耗速率略微增大,整体仍延长了钢轨寿命。   相似文献   

3.
为设计可提升列车小半径曲线通过性能的钢轨非对称打磨目标廓形,对中国现有CN60钢轨廓形进行了几何推导;以钢轨廓形几何参数作为设计变量,以车辆系统多体动力学指标作为综合目标函数,考虑钢轨打磨约束条件,提出了一种针对小半径曲线钢轨非对称打磨廓形的多目标数值优化模型;基于差分进化算法编写了相应的数值计算程序,并选择合理的计算参数求解了优化模型;根据实际线路参数分析了优化后钢轨打磨廓形的轮轨接触几何特性,并验证了列车的小半径曲线动力学性能。研究结果表明:提出的优化方法具有较快的计算速度,优化模型仅迭代了97次即可获得理想的钢轨打磨廓形;非对称打磨使内外钢轨具有差异性的打磨位置与打磨深度,将轮轨对中位置向轨道内侧移动了约10 mm,且不会改变轮缘处的轮轨匹配特性,有效增大了轮对横移10 mm范围内的轮对滚动圆半径差与轮轨接触角差,降低了列车在通过小半径曲线时的轮对横移、轮轨横向力、脱轨系数和轮重减载率,提高了转向架的横向稳定性和轮轨磨耗性能;虽然该打磨方式获得的钢轨廓形增大了轮轨接触应力,但并不会引起轮轨塑性变形。由此可见,该设计方法为提高列车的中小半径曲线通过能力提供了一种可行途径。   相似文献   

4.
选取徐兰高铁1组道岔作为研究对象,采取个性化道岔钢轨廓形打磨,分析打磨前后轮轨几何关系,并建立车辆-道岔耦合无砟轨道系统动力分析模型,研究对比打磨前后高速列车动力学特性。结果表明:通过个性化钢轨打磨道岔后,道岔钢轨左右股较为对称,轮轨等效锥度得到优化;列车通过道岔时,轮轨横向力峰值、轮轨磨耗功峰值均显著降低,列车轮轨作用力得到改善;轮重减载率峰值、脱轨系数峰值及轮轨横移量峰值均降低,列车安全性得到显著提升;车体横/纵向加速度峰值及构架横/纵向加速度峰值均降低,列车运行稳定性得到提升。  相似文献   

5.
选陇海线1条磨损较为严重的小半径曲线下股调边轨作为研究对象,进行个性化打磨方案设计,对轮轨几何接触状态进行分析,并进行车辆-轨道多体系统动力学仿真。结果表明:打磨后调边轨面掉块、轨面光带、钢轨磨耗速率及钢轨质量指数TQI得到显著改善;通过轮轨接触几何分析可知,打磨后等效锥度及轮轨接触点均得到优化,列车运行稳定性及轮轨接触状态得到改善;通过车辆-轨道多体系统动力学仿真研究可知,打磨后1~4位车轮与调边轨接触时接触斑内磨耗功最大值、轮重减载率最大值、车体垂向/横向加速度均降低,轮轨磨耗特性、列车运行安全性及稳定性均得到改善。  相似文献   

6.
随着车辆的运行,车轮踏面会出现不同程度的磨耗,为研究磨耗状态下车轮与钢轨之间的静态匹配性能,利用轮轨接触几何关系和非赫兹滚动接触理论,计算不同磨耗程度的车轮对轮轨接触几何参数和接触力学特性的影响,并与CHN60钢轨的计算结果进行对比.分析结果表明:轮对横移小于4 mm时,车轮磨耗程度越大,车轮上接触点的横向分布宽度越大,60N钢轨的接触点横向分布宽度明显小于CHN60钢轨,对提高车辆运行稳定性有利;车轮磨耗程度越大,轮轨磨耗指数越大,60N钢轨的轮轨磨耗指数较小,有利于轮轨廓形的保持能力.车轮磨耗程度越大,位于表面滚动接触疲劳区的范围越大,相比CHN60钢轨,60N钢轨位于表面滚动接触疲劳区的情况较少,相同条件下,能够减少轮轨滚动接触疲劳伤损的发生.   相似文献   

7.
为了分析不同钢轨廓形对我国高速铁路轮轨型面匹配的影响,针对高速铁路线路上使用的CHN60、60N和60D钢轨廓形,基于经典迹线法、三维非赫兹滚动接触理论及车辆-轨道耦合动力学,分别研究了不同钢轨廓形与高速车轮LMA型面匹配时的轮轨接触特性和车辆动力学性能.研究结果表明:不同钢轨廓形下,轮轨接触几何关系有较明显的差异;在不同轮对横移量下,CHN60钢轨的轮轨接触应力比另外两种钢轨廓形小;当轮对横移量为6 mm时,CHN60钢轨对应的轮轨接触状态最优,其接触斑面积最大,且接触应力分布较为均匀;不同钢轨廓形对车辆的临界速度及曲线通过能力影响较大,60D钢轨与LMA型面匹配时车辆的临界速度约为763 km/h,为三者中最高,但CHN60钢轨与LMa型面匹配时车辆的曲线通过性能最好,相应的轮轨横向力最大值3.584 k N,轮对横移量最大值3.35 mm,是三者中最小.  相似文献   

8.
重载铁路及客货共线铁路运营条件下,轮轨磨耗问题尤为突出. 为了有效减缓轮轨磨耗发展,以不同接触条件下轮轨廓形共形度最优为原则,设计目标函数及约束条件,建立钢轨廓形非线性优化数学模型,并基于序列二次规划法进行求解,提出60 kg/m钢轨廓形的优化方案;从轮轨接触几何关系、车辆-轨道系统动力作用、磨耗的角度对优化廓形的优化效果进行了对比分析. 结果表明:1) 所提出的60 kg/m钢轨优化廓形相对于原始廓形使目标函数值降低了50%,与LM车轮廓形具有更高的共形度水平;2) 优化廓形的轮轨接触点分布更为均匀,在轮对横移量较小的条件下轮径差更小,在轮对横移较大的条件下轮径差更大;3) 优化廓形对车辆运行安全性和平稳性无显著影响,可有效增大轮轨接触面积达11.24%,降低接触应力达20.42%,减缓轮轨磨耗发生发展速率.   相似文献   

9.
高速铁路钢轨打磨技术及其应用   总被引:3,自引:0,他引:3  
根据广深线钢轨斜裂纹的形成与发展特点,提出采用非对称打磨技术控制和减缓钢轨斜裂纹的形成,并进行了数值计算和现场打磨试验.数值计算结果表明:钢轨非对称打磨可以改变轮轨接触几何参数,使轮轨接触点向钢轨顶面中心移动,远离钢轨轨肩位置,并降低轮轨接触应力.现场打磨试验验证了数值计算结果,试验结果表明钢轨非对称打磨能改变钢轨光带,使接触点向钢轨踏面中心移动.  相似文献   

10.
为合理选取固定辙叉心轨轨顶降低值,基于车轮踏面在翼轨和心轨间过渡时的轮轨接触几何关系和动力相互作用,提出了心轨关键断面降低值的选取及评价方法.以LMA型车轮踏面列车直逆向通过60 kg/m钢轨12号固定辙叉式道岔为例,用该方法对心轨轨顶降低值进行了优化.结果表明:心轨关键断面降低值的确定,在满足固定辙叉区轮载过渡的安全性和心轨承载断面强度要求的同时,应提高列车运行的稳定性;断面降低值越小,产生的轮轨相互作用越小,有利于提高行车性能,但需考虑此时轮轨作用位置是否超出心轨结构承载能力范围;60 kg/m钢轨12号固定辙叉心轨顶宽20和50 mm断面处,可分别取3和0 mm降低值作为优选方案.   相似文献   

11.
为研究固定辙叉结构不平顺对列车过岔动力特性的影响,基于岔区轮轨系统动力学及轮轨接触关系理论,以12号提速道岔固定辙叉为例,分别建立了翼轨不同加高设计方案下的辙叉模型以及CRH2型车车辆模型,在此基础上,深入分析了翼轨加高设计对列车过岔动力特性、过岔速度以及行车平稳性的影响规律. 结果表明:列车过岔时,随着翼轨向外弯折,其轮轨接触区域开始外移,并由此造成辙叉区轮对质心垂向位置的降低;通过设置合理的翼轨加高值,可有效降低辙叉区轨道的竖向结构不平顺,进而抑制轮对质心垂向位置的降低,提高列车过岔的平稳性及旅客乘车舒适度;固定辙叉翼轨加高设计,可有效改善列车直向过岔动力特性,但对侧向过岔效果有限;当加高值设置为3 mm时,翼轨加高优化的效果最佳,与无加高设计相比,加高后列车直向过岔第一轮对横向和垂向轮轨力最大幅值分别降低了45.8%和30.3%,车体横向及垂向加速度则分别降低了42.2%和26.1%;随着列车运行速度的提高,过岔时的轮轨动力响应也开始逐渐加剧,合理的翼轨加高设计将有利于提高列车的过岔速度. 研究成果可为我国铁路线路道岔固定辙叉的结构优化设计提供理论参考.   相似文献   

12.
为研究60N钢轨350 km/h 18号高速道岔合理的轨距和轨底坡,利用60N钢轨高速道岔关键断面和实测LMA磨耗车轮,基于迹线法原理和Kalker三维非赫兹滚动接触理论,分析不同轨距和轨底坡参数下的轮轨接触几何和力学特性,并与CHN60钢轨高速道岔计算结果进行对比. 结果表明:在保证安全的前提下适当将轨距加宽可改善轮轨匹配关系,提升列车过岔平稳性,减小轮对横移量大于8 mm时的轮轨接触应力和表面滚动接触疲劳因子,延长尖轨使用寿命;轨底坡为1/30、1/40和1/50时,轮轨接触参数相差较小,匹配性能较优;轨底坡为1/10和1/20时,横向不平顺和轮轨滚动接触疲劳因子普遍较大,且1/10轨底坡对车轮磨耗的适应性较差;与CHN60钢轨高速道岔相比,60N钢轨高速道岔的等效锥度普遍更小,列车过岔平稳性更优;车轮磨耗易导致车轮在轮轨过渡区段空转,引起尖轨伤损.   相似文献   

13.
为了解轨道车辆运营中普遍存在的钢轨波磨问题,分析了钢轨波磨的形成机理,阐述了钢轨波磨对车辆-轨道系统动力学性能的影响,综述了常见的钢轨波磨检测、监测与抑制方法,并展望了钢轨波磨的研究方向。研究结果表明:车辆-轨道系统耦合振动、轮轨反馈振动、轮轨自激振动和轮轨接触振动是形成钢轨波磨的主因,车辆-轨道结构、线路运营条件、轮轨材料、钢轨型面和车轮踏面轮廓等多方面因素相互耦合作用亦会引起钢轨波磨;重载、高速铁路和地铁钢轨波磨会影响车辆-轨道系统动力学性能和车辆与轨道零部件寿命,也会影响扣件、钢轨、轨枕、轨道板(道砟)和轴箱等零部件的振动特性,各零部件的阻尼、刚度等物理参数与运行条件不匹配时也会造成钢轨波磨,列车长时间运行在钢轨波磨路段时会导致车辆-轨道结构产生强烈共振,造成严重疲劳损伤,影响行车安全;检测与监测是研究和发现钢轨波磨的重要辅助手段,抑制钢轨波磨主要通过改善轮轨接触关系、钢轨打磨、提高钢轨表面材料硬度、添加相关摩擦调节剂和轮轨润滑剂、使用钢轨吸振器技术、优化轮轨系统结构以及调整列车运营规定等措施来实现;目前,钢轨打磨仍是消除和减轻钢轨波磨最直接、最有效和最经济的措施,应提升并改善钢轨打磨技术。   相似文献   

14.
为更深入全面了解高速列车系统动力学研究现状,综述了高速列车动力学性能对车辆运行稳定性、安全性和平稳性的影响,总结了列车安全评价方法和动力学试验方法在车辆动力学中的应用,基于轮轨间作用力,分析了轮轨磨耗对列车动力学性能的影响,概括了车-桥耦合模型、弓网系统以及列车空气动力模型在车辆系统动力学中的研究内容。分析结果表明:车轮异常磨耗会导致舒适性下降,合理的车轮镟修能有效降低车轮非圆化和车辆系统关键部件的振动,降低车内振动噪声,增加列车运行稳定性、安全性和平稳性;合适的轮对定位刚度和抗蛇行减振器的刚度和阻尼有利于提高列车蛇行运动稳定性和转向架运动临界速度;钢轨波磨严重时会导致钢轨扣件松动,缩短车辆构架和钢轨的使用寿命;通过合理的钢轨廓型打磨可消除曲线波磨,改善轮轨关系;行波效应对车辆安全性影响很大,与相同激励下的各项参数相比,车速为350 km·h-1、行波速度为300 m·s-1时的脱轨系数、轮重减载率和轮轨横向力都有所降低;横风作用下受电弓气动抬升力增大,影响接触网安全,增大弓头阻尼和弓头刚度可改善弓网受流特性。   相似文献   

15.
为研究岔区轮轨匹配关系和经典轮轨接触理论对岔区的适用性,建立了岔区轮轨接触有限元模型,编写了数种岔区法向力及切向力计算程序. 以18号高速道岔转辙区及辙叉区典型断面为例,在法向对比了赫兹、半赫兹、Kalker三维非赫兹滚动接触理论与有限元模型在接触斑面积和接触应力上的差异,切向对比了基于赫兹和半赫兹的FASTSIM算法、Polach模型和CONTACT程序在不同工况下的蠕滑力差异. 计算结果表明:有限元模型考虑了轮轨材料应力应变特性,更接近实际运用工况,赫兹、半赫兹、Kalker三维非赫兹与有限元法接触斑面积分别最大相差50.42%、17.83%和24.78%,最大接触应力相差60.28%、25.25%和32.37%; 各工况下4种切向力模型蠕滑力随蠕滑率的变化趋势相同,同一工况下基于赫兹和半赫兹的FASTSIM算法和Polach模型与CONTACT计算结果最大相差8.08%、5.19%、9.70%; 综合岔区轮轨法向、切向计算精度和计算效率,半赫兹接触理论结合FASTSIM算法在岔区大批量的数据处理中更具优势.   相似文献   

16.
高速列车轮对因定位不准会导致不同程度的初始安装偏差,在通过道岔等薄弱环节时轮轨关系急剧恶化,影响行车安全. 为研究车辆在初始安装偏角状态下通过高速道岔的动力学性能,以18号道岔为研究对象建立了具有初始偏转角的车辆-道岔耦合动力学模型,对前轮对偏转、后轮对偏转、前/后轮对同向偏转、前/后轮对反向偏转4种工况进行仿真,结合理论推导与数值仿真分析了不同偏转角对车辆入岔姿态及直逆向过岔走行性能的影响. 研究结果表明:初始偏转角向尖轨侧偏转时会导致轮轨过渡位置提前,甚至造成轮缘接触;初始安装偏角对轮轨垂向力的影响主要与偏角形式及偏转角有关,且偏转角超过一定限度时,岔区固有不平顺会进一步加剧轮轨垂向冲击;轮轨横向力主要受主接触点方向与道岔区横向冲击方向的叠加控制;前/后轮对反向偏转情况下,轮轨接触关系恶化,当偏转角为?2.0~?3.0 mrad,脱轨系数超限,影响行车安全.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号