首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Time-varying coefficient vector autoregressive (T-VVAR) modeling with instantaneous responses is applied to spectrum analysis based on the nonstationary motion data of ships. Because of the ship's maneuvers, changes such as course and speed, the ship motions in waves are regarded as a nonstationary random process, although the seaway can be considered as a stationary stochastic process. The T-VVAR model is transformed into a state space model, and the time-varying coefficients can be evaluated by using the Kalman filter algorithm. Using the estimated time-varying coefficients, the instantaneous cross spectra of the ship motions can be calculated at every moment. In order to examine the reliability of the proposed procedure, on-board tests were carried out. Under stationary conditions, at a constant speed and course, the proposed method shows good agreement with stationary vector autoregressive (SVAR) modeling analysis. Moreover, it is confirmed that the proposed method can estimate the instantaneous cross spectra of the ship motions even under nonstationary conditions, showing that this is a powerful tool for on-line analysis of the nonstationary motion data of ships. Received: August 2, 2002 / Accepted: November 28, 2002 Acknowledgments. The authors thank the captain and crew of the training ship Shioji Maru, Tokyo University of Mercantile Marine. Address correspondence to: T. Iseki (iseki@ipc.tosho-u.ac.jp) Updated from the Japanese original, which won the 2002 SNAJ prize (J Soc Nav Archit Jpn 2001;190:161–168)  相似文献   

2.
The paper presents an empirical method to calculate bow flare slamming pressure and the green water load. Many empirical formulae for various types of vessels have been provided by rules of ship classification societies. In the present work, attempt is made to develop generalized formulations for all types of displacement vessels. Extreme sea conditions are considered. Bow flare pressure is derived in terms of flare and waterline angles. Specific condition for limiting waterline angle is derived based on 2 D numerical simulations. Deck wetness is derived in terms of static and dynamic swell-up and the relative motion. Variation of static swell along the length is determined based on potential solution based analyses considering variation in vessels' hull. 2 D wedge simulations are carried out to validate the formulation of dynamic swell-up. Results of the calculated bow flare and deck pressures are compared with various ship classification society formulations and the trends are found to be in good agreement in general barring at bow flare where lower pressure is found in most of the presented cases. Also IACS UR S21 A(2018) governing minimum pressure for deck scantlings is found to be conservative in few of the presented cases. Although scantlings assessment is not performed, the presented new formulations may help in realistic assessment of scantlings.  相似文献   

3.
 We have attempted to develop a more consistent mathematical model for capsizing associated with surf-riding in following and quartering waves by taking most of the second-order terms of the waves into account. The wave effects on the hull maneuvring coefficients were estimated, together with the hydrodynamic lift due to wave fluid velocity, and the change in added mass due to relative wave elevations. The wave effects on the hydrodynamic derivatives with respect to rudder angles were estimated by using the Mathematical Modelling Group (MMG) model. Then captive ship model experiments were conducted, and these showed reasonably good agreements between the experiments and the calculations for the wave effects on the hull and the rudder maneuvring forces. It was also found that the wave effects on restoring moments are much smaller than the Froude–Krylov prediction, and the minimum restoring arm appears on a wave downslope but not on a wave crest amidship. Thus, an experimental formula of the lift force due to the heel angle of the ship is provided for numerical modelling. Numerical simulations were then carried out with these second-order terms of waves, and the results were compared with the results of free-running model experiments. An improved prediction accuracy for ship motions in following and quartering seas was demonstrated. Although the boundaries of the ship motion modes were also obtained with both the original model and the present one, the second-order terms for waves are not so crucial for predicting the capsizing boundaries themselves. Received: June 20, 2002 / Accepted: October 10, 2002 Acknowledgments. This research was supported by a Grant-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 13555270). The authors thank Prof. N. Rakhmanin of the Krylov Ship Research Institute for providing the Russian literature, as well as Mr. H. Murata of NHK (Japan Broadcasting Corporation) for translating it into Japanese. Address correspondence to: N. Umeda (e-mail: umeda@naoe.eng.osaka-u.ac.jp)  相似文献   

4.
舰船的砰击载荷与结构响应的研究一直备受关注.对于双体船来说,砰击按部位可分为底部砰击、外飘砰击和甲板上浪,和连接相邻船体的甲板下侧,即湿甲板砰击.目前对于双体船的砰击计算还不完善,因此对于该船型的砰击研究十分必要.本文分别利用规范计算和直接计算的方式,对砰击载荷作用下双体船强度影响进行研究.规范计算主要基于中国船级社规范计算砰击载荷,直接计算则是通过线性势流理论预报船波相对速度,借助相关规范确定砰击压力系数,实现砰击载荷的直接计算.通过有限元软件加载计算,分析比较2种载荷计算方法对双体船强度的影响,以指导砰击载荷作用下双体船局部结构的设计实践.  相似文献   

5.
 A nonlinear time-domain procedure is presented which is used to calculate the vertical responses of a container ship advancing in head waves. The method assumes linear radiation forces represented by time convolution of memory functions, infinite frequency added masses, and radiation restoring coefficients. The nonlinear hydrostatic restoring and Froude–Krilov forces are computed exactly over the instantaneous wetted surface of the ship's hull. Forces due to green water on deck are calculated using the momentum method. Nonlinear effects are identified on different vertical ship responses, namely on the heave and pitch motions, the vertical accelerations, and the vertical bending moment. These non-linear effects are expressed by the variation of the transfer function with the wave amplitude, the higher-order harmonics of the time signals, the offset of the time series, and the asymmetry of the peaks. The numerical results and the quantified nonlinear effects are compared with experimental results showing an ability to reproduce the main nonlinear effects. Received: December 17, 2001 / Accepted: January 31, 2002  相似文献   

6.
由于有限水深中船舶搁浅和触礁等严重破损事故频发,为了减少事故的发生,对有限水深中船舶破损后的运动及波浪载荷的研究显得十分必要。文章基于三维势流理论,引入有限水深自由面Green函数,在频域内使用奇点分布法对一艘首部破损进水的散货船在有限水深中的运动与波浪载荷展开了计算,并根据劳氏船级社规范做了短期预报。短期预报结果表明,该散货船破损进水后,船体所受垂向和水平波浪弯矩均比破损前有明显增加,且在较浅水深中变化更为显著。  相似文献   

7.
 A structural safety assessment of a pontoon-type very large floating structure (VLFS) surrounded by a gravity-type breakwater was carried out for extreme wave conditions by considering the damage to the breakwater. Bending and shear collapses are considered to be a failure mode of the floating structure, while overturning damages the breakwater. The probability of the breakwater overturning, and the transmitted wave height before and after damage to the breakwater, are evaluated using design formulae for port and harbor facilities in Japan. The ultimate bending and shear strengths of the floating structure are calculated by the idealized structural unit method (ISUM) and FEM, respectively. The calculated failure probability for the floating structure is compared with the specified target safety level. It was found that the floating structure under consideration is most likely to fail by bending in transverse waves, and that the corresponding failure probability satisfies the target level. Received: September 12, 2002 / Accepted: October 4, 2002 Acknowledgment. The authors are grateful to Dr. Shigeo Ohmatsu, National Maritime Research Institute, Japan, for allowing us to use the program of hydroelastic response analysis. Address correspondence to: M. Fujikubo (e-mail: fujikubo@naoe.hiroshima-u.ac.jp) Updated from the Japanese original, which won the 2002 SNAJ prize (J Soc Arthit Jpn 2002;190:337–345)  相似文献   

8.
洪志涛  肖桃云 《船海工程》2011,40(6):83-86,91
考虑甲板运输船的甲板相对较宽,容易导致尺度比超出规范的限定,因此其强度分析应该特殊考虑.利用有限元分析软件MSC.Patran/Nastran建立舱段有限元模型,对甲板运输船的艏部舱段在总纵外载荷、外部水压力和甲板局部载荷作用下的强度进行直接计算和分析.  相似文献   

9.
为了研究舰船甲板的变形,对其结构进行了简化,建立了舰船甲板受力的数学模型。分别在横向载荷、总纵弯矩及二者共同作用等3种情形下,对舰船甲板的变形特性进行了计算。计算结果表明,舰船甲板受力变形为mm级;在横向载荷作用下,舰首甲板变形最大;在总纵弯矩作用下,甲板的0.6~0.75间部位变形最大。  相似文献   

10.
The theory and procedure established by Wu and Moan in 1996 and 2005 and Wu and Hermundstad in 2002 were applied to a high-speed transatlantic pentamaran containership. Nonlinear time-domain simulations of ship motions and load effects were carried out in different sea states. The simulated responses were validated against model tests with satisfactory results. The short-term probabilities of exceedance were estimated by using different stochastic analysis procedures. The long-term probabilities of exceedance were obtained based on the short-term results. These served as information about loading in a reliability-based design approach. The load effects in a semiprobabilistic design were also calculated at an appropriate probability of exceedance level.  相似文献   

11.
In this paper, the influence of heave and pitch motions on green water impact on the deck is numerically investigated. The vessel motions are determined using a potential theory based method and provided as input to finite volume based CFD computations of green water phenomenon. A dynamic mesh approach is adopted to determine instantaneous body positioning in the fluid domain.Detailed validation studies with published experimental results for 2D and 3D fixed vessel cases are initially performed to validate the present numerical approach before studying the moving vessel problem. The results show that inclusion of heave and pitch motion changes the disturbed wave field near the bow which influences the free surface as well as the impact loading due to green water. The effect of wave steepness on green water impact is also investigated and it is seen that the present numerical method is capable of capturing green water load. It is observed that the effects of vessel motions on green water load are not negligible and one should consider this effect too. The incorporation of vessel motions in the vertical plane affects the green water loading on the deck.  相似文献   

12.
客滚船的特殊线型——艏部外飘幅度较大和艉部的扁平肥大型结构,在营运过程中易受到砰击载荷的作用。由于该类船舶砰击问题显著,故一直是业内研究的热点。以某客滚船为例,针对其艏艉结构进行砰击计算,采用计算量适中,且可实现砰击载荷预报的频域法,将砰击载荷映射到相应各部分的有限元计算模型上,经计算分析,得到艏艉结构在砰击压力下的应力结果,最终实现对客滚船砰击强度的安全评估。整个计算探讨过程,可供同类船舶的设计研究人员借鉴。  相似文献   

13.
Defining numerical uncertainty is an important part of the practical application of a numerical method. In the case of a ship advancing in short and steep waves, little knowledge exists on the solution behaviour as a function of discretisation resolution. This paper studies an interface-capturing (VOF) solution for a passenger ship advancing in steep (kA = 0.24) and short waves (L w /L pp = 0.16). The focus is to estimate quantitative uncertainties for the longitudinal distributions of the first–third harmonic wave loads in the ship bow area. These estimates are derived from the results of three systematically refined discretisation resolutions. The obtained uncertainty distributions reveal that even the uncertainty of the first harmonic wave load varies significantly along the ship bow area. It is shown that the largest local uncertainties of the first harmonic wave load relate to the differences in the local details of the propagating and deforming encountered waves along the hull. This paper also discusses the challenges that were encountered in the quantification of the uncertainties for this complex flow case.  相似文献   

14.
以国产首制大型邮轮为例,围绕其支柱的设计流程,从支柱的布置、设计载荷、规范设计和全船有限元分析等4个方面进行分析,总结该类船型的支柱设计特点。在规范计算中,主要考虑规范平均载荷和局部集中载荷2种情况下受压支柱的屈曲强度;在有限元分析中,主要考虑规范平均载荷与船体梁变形共同作用下支柱的屈曲强度和受拉支柱的屈服强度。通过全船有限元分析验证该设计满足要求,受拉支柱主要出现在艏部、艉部和上层甲板。研究成果及其实践可为后续类似船型的支柱设计提供参考。  相似文献   

15.
对于首尾破冰模式的极地船舶,规范中并没有详细给出其冰带划分的方法,仅仅提到尾部破冰参考艏部破冰区域划分,但由于船体尾部线型和艏部线型差距较大,故并不能很好的适用,本论文以一艘PC4级110kt极地原油船为例,就此针对尾破冰模式进行冰区带划分。 另外冰载荷产生的弯矩剪力对船体总体强度的影响也在本文中论述。  相似文献   

16.
针对宽幅平底船型在风浪中航行,其船艏底部易遭受砰击从而引发船体高频振动的现象,对某型宽幅平底船型进行了研究.通过对目标船艇开展理论计算、船模试验、实船测量等多项工作.研究了非常规船型的砰击载荷.运用理论研究和试验相结合的方法,开展了复杂船型的砰击载荷研究,提出了理论预报的估算公式.通过大量计算和相关试验,得出了船型、航速和海况是影响宽幅平底船型砰击载荷的三大主要因素的结论.  相似文献   

17.
陈雷厉 《船舶》2008,19(5):17-20
对开式艏门作为某型船的关键设备在波浪载荷下容易损坏。文章阐述了采用模型试验、理论计算、规范计算、实船试验等方法研究艏门波浪载荷,进行艏门有限元建模计算,从而找到薄弱环节并进行优化改装设计的方法。  相似文献   

18.
In this research,a commercial CFD code "Fluent" was applied to optimization of bulbous bow shape for a non ballast water ships(NBS).The ship was developed at the Laboratory of the authors in Osaka Prefecture University,Japan.At first,accuracy of the CFD code was validated by comparing the CFD results with experimental results at towing tank of Osaka Prefecture University.In the optimizing process,the resistances acting on ships in calm water and in regular head waves were defined as the object function.Following features of bulbous bow shapes were considered as design parameters: volume of bulbous bow,height of its volume center,angle of bow bottom,and length of bulbous bow.When referring to the computed results given by the CFD like resistance,pressure and wave pattern made by ships in calm water and in waves,an optimal bow shape for ships was discovered by comparing the results in the series of bow shapes.In the computation on waves,the ship is in fully captured condition because shorter waves,λ/Lpp 0.6,are assumed.  相似文献   

19.
通常考虑船-冰碰撞附连水的水动力效应有附加质量法和流固耦合法。本文建立了破冰船破冰场景,基于流固耦合法进行了数值仿真计算,分析了水域流场对船体的冲击压力变化、流场的速度分布变化以及流场的动能变化。同时与附加质量法的计算结果进行了比较,对比分析了船艏的碰撞力大小、损伤变形以及局部冰载荷等差异,揭示了流场对船-冰碰撞的影响规律,对于破冰船结构设计具有重要的参考价值。  相似文献   

20.
为满足海洋平台的需求,对多用途船甲板加装固定橇块单元。从安装位置、甲板强度计算、稳性要求、电力负荷要求及防爆要求等方面对加装方案进行全面考虑。该方案不仅可缩短货物的灌装时间,而且可提高船舶的周转率,进一步提升船舶的市场竞争力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号