首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
《黑龙江交通科技》2016,(9):145-146
下穿道路隧道在生活及施工中非常普遍,如何确保在隧道施工过程中的安全显得尤为重要,本文以洛带古镇隧道下穿砖厂道路段施工技术为研究对象,通过分析隧道下穿该路段时是否安全,采用了FLAC3D数值软件对下穿施工进行了模拟计算,对类似工程具有借鉴作用。  相似文献   

2.
城市地铁区间修建过程中,盾构隧道开挖对邻近既有构(建)筑物扰动的影响是一个热点、难点问题。针对某城市双线盾构隧道侧穿铁路桥梁桩基且下穿城市道路U型槽工程,采用三维数值仿真模拟技术,研究了盾构隧道施工对邻近桩基的影响。研究结果可为城市轨道交通盾构隧道的安全穿越以及下穿段既有构(建)筑物的监控量测提供了依据。  相似文献   

3.
高大  李云龙  王刚 《北方交通》2022,(2):77-79,84
盾构隧道下穿有轨电车路基时,会对周围土层造成扰动并造成路基沉降.路基沉降可能会给有轨电车运营安全带来较大影响.为研究盾构隧道下穿有轨电车路基过程中路基的沉降变化规律,以沈阳地铁4号线沈创区间为例,采用Midas-GTS-NX有限元软件对盾构隧道下穿有轨电车路基施工过程进行三维数值模拟,研究结果表明:本工程最大沉降量约为1.4mm,小于有轨电车路基沉降控制值10mm,无需采取其他处理措施即可满足变形控制要求;左右线盾构隧道同时开挖时,路基沉降量最大.在实际工程中,盾构隧道下穿重要构筑物时应尽量避免同时施工;左右线盾构隧道前后错开一定距离后施工可减少路基沉降,也可缩短工期.  相似文献   

4.
以国内某盾构隧道下穿既有构筑物为工程依托,运用有限元分析软件Plaxis模拟盾构隧道开挖的全过程.对施工所引起的沉降进行数值模拟分析。研究结果表明:隧道下穿住宅楼时,桩基础会产生较大的不均匀沉降;隧道下穿锅炉房时,左右线开挖后引起的基础沉降都超出了可控范围;隧道在先后下穿住宅楼和锅炉房的施工过程中都存在较大风险。通过研究提出了盾构施工期间技术措施,有效地控制构筑物沉降,以达到相关安全性要求。  相似文献   

5.
以某区间盾构隧道下穿高架桩基为工程背景,本项目条件复杂,施工变形控制严格,对此类复杂环境下地铁盾构隧道下穿高架桥桩基的托换施工技术进行分析,突破托换过程中结构止水性能、稳定性及刀盘刀具改造等技术难点,同时采用平面应变的计算模式对托换桩的施工过程进行模拟。结果表明:桥墩、托桩最大沉降量均在预警范围内。通过研究分析施工方案技术可行、水平较高,可为类似工程提供一定的工程借鉴和参考。  相似文献   

6.
赵瑾 《北方交通》2020,(1):71-74
沈阳地铁9号线皇姑屯站-北一路站区间为双线盾构隧道,盾构隧道左线和右线下穿兴华街铁路框构桥。采用Midas-GTS大型有限元计算软件,建立三维地层-结构模型,对盾构穿越既有框构桥施工过程进行模拟计算,分析得出盾构隧道下穿时对既有框构桥的应力影响。  相似文献   

7.
确保盾构区间隧道在下穿施工过程中能够有效地保护既有结构物的安全,是目前地铁隧道下穿施工亟待解决的主要问题之一。以实际工程项目为基础,通过有限元软件GTS-NX构建三维实体模型,基于实际施工情况前提下,将盾构隧道下穿既有普铁路基作为分析对象,通过数值模拟分析法分析其变形规律,并对施工过程中路基的沉降规律进行观察。为后续施工期间采取科学合理的安全措施提供指导,同时也为类似的相关工程开展提供参考。  相似文献   

8.
通过综合利用测量机器人及自动化安全监测设备,对大直径盾构下穿高速公路施工过程中的路面、周边地表、地表建(构)筑物等外部变形情况进行实时监测,利用相应的处理软件对监测数据进行综合分析,对比设计控制指标,动态调整施工参数,到达指导盾构施工的目的。实践证明,雅万高铁1号隧道所采用的监测技术稳定性好、经济实用。  相似文献   

9.
大直径盾构隧道下穿高层建筑物是城市市政工程中经常遇到的施工状况,在盾构掘进过程中隧道周边土层会发生一定的变形,从而威胁到建筑物的结构安全稳定,对此类工程施工过程进行风险分析和结构变形计算是十分必要的。以此类工程施工为研究背景,采用数值模拟和原位监测的手段,发现大直径盾构掘进过程和掘进后对高层建筑沉降影响较大,并且盾构下穿过程对地下室底板和独立式桩基变形也有显著影响;采用洞内同步注浆有利于减少建筑物沉降。大直径盾构隧道下穿过程中应明确施工风险,严格控制掘进参数,制定有效沉降控制措施是降低施工风险的有效手段。  相似文献   

10.
目前研究中的盾构隧道下穿高速铁路桥梁段扰动性建模方法建模效果较差,本文考虑地层变形规律提出一种新的盾构隧道下穿高速铁路桥梁段扰动性建模方法。首先分析地层变形规律,从地层受压期、地层下沉期以及地层微稳定期3个阶段出发,得到变形阶段示意图,计算地层损失率,根据地层损失率得到轨道-路基-土体有限元模型,通过盾构隧道沉降系数确定模型为横向地层变形状态或纵向地层变形状态。再分析安全系数,得到盾构隧道下穿高速铁路桥梁承载力,选取冲击力、摩擦力以及负荷力,计算桥梁扰动性程度,建立盾构隧道下穿高速铁路桥梁段扰动性模型。最后根据扰动模型判断盾构隧道下穿高速铁路桥梁的扰动状况。该扰动模型具有很强的判断能力,对于盾构隧道下穿高速铁路状况分析有积极意义。  相似文献   

11.
针对深圳地铁7号线某区间盾构隧道下穿既有地铁1号线区间实际工程,采用MidasGTS软件建立了盾构施工的物理力学模型,模拟了盾构隧道穿越既有线施工过程,预测分析了盾构施工对既有盾构区间的影响。计算结果表明,在对隧道间土体进行洞内注浆加固的条件下,盾构区间施工对既有地铁线沉降变形存在一定影响,但影响程度较小,可以满足既有线运营要求。  相似文献   

12.
新建北京某地铁盾构隧道下穿既有国家一级铁路干线,为此对盾构下穿铁路过程进行分析,预测施工引起的既有铁路路基扰动、轨道结构变形,在此基础上评价既有铁路结构是否安全,轨道是否满足运营要求。  相似文献   

13.
印尼雅万高铁1号隧道进出口明挖与盾构井段采用地下连续墙围护结构,地连墙成槽工序是墙体质量保证的关键,而护壁泥浆的质量好坏是保证墙体施工质量和进度的关键。在合理分析工程地质特性和护壁泥浆控制指标的基础上,配制了合格的护壁泥浆,并在使用过程中对其进行不间断的控制,保证了雅万高铁1号隧道地震多发带半胶结复杂地质条件下地下连续墙墙体成槽质量。  相似文献   

14.
为了控制盾构近接施工区既有建筑物的沉降变形,以福州地铁某线下穿文化街区的隧道盾构施工为例,采取全过程分阶段风险控制措施,并建立其隧道盾构的数值仿真模型,分析盾构施工对建筑物和地表沉降的影响。模拟结果表明:盾构下穿建筑物的最大沉降为4.9 mm,地表最大沉降为5.5 mm,均满足规范要求。同时将数值模拟结果和现场监测结果进行比对,验证了数值模拟的可靠性。研究结果可为类似隧道盾构下穿既有建筑物的风险管理和控制提供参考。  相似文献   

15.
以兰州轨道交通1号线泥水盾构下穿砂卵石黄河地层为工程背景,对同步注浆施工过程中的浆液类型、注浆压力、注入率、注浆量以及注浆速率参数进行研究.通过统计与有限元方法分析,得到如下结论:对比三种同步注浆浆液的类型的优缺点,得到同步注浆的浆液为单液硬性浆,然后用有限元软件Plaxis对下穿黄河段注浆压力进行数值分析,计算了隧道中心线埋深分别为15 m、21 m、27 m情况下,注浆压力为0.2 MPa、0.4 MPa、0.6 MPa、0.8 MPa、1.0 MPa下盾构隧道中心线位移,确定盾构隧道穿越黄河段的注浆压力为0.4 MPa;分析现场盾构施工实际参数,得到注浆率控制在130%~180%,注浆量为4.3~6 m~3,注浆速率为0.07~0.17 m~3/min.  相似文献   

16.
广州地铁盾构隧道施工过程中,盾构隧道靠近一处高架桥的钻孔桩基,采用袖阀管注浆的方法,隔离了盾构隧道与高架桥的钻孔桩基,并加固了盾构隧道通过路段的地基,减轻了盾构隧道施工对钻孔桩基的影响,保证了高架桥的安全。介绍了袖阀管注浆加固地基的方案选定、施工参数的设计、施工监测和施工中应注意事项等,对同类工程有借鉴意义。  相似文献   

17.
佛山市季华路西延线工程顺德水道隧道作为下穿顺德水道的第一条大直径盾构隧道,穿江段工程条件及水文条件复杂,具有断面直径大、水压高、覆土浅、间距小、建设条件复杂等特点,总体设计难度大.本文结合其建设环境条件及设计施工等因素,采用理论研究、专题论证、经验总结等方法,对隧道平面、纵断面、横断面、下穿码头泊位、下穿堤防加固等部分...  相似文献   

18.
盾构法施工被广泛应用于城市轨道交通建设中,盾构区间隧道不可避免会存在穿越既有桥梁的情况;而穿越既有桥梁时必须要考虑施工过程桥梁墩顶的位移情况,确保桥梁运行安全。以宁波市轨道交通4号线金达路站—钱湖大道站区间下穿杭深线、北环线鄞县特大桥工程为例,利用Plaxis 3D有限元软件对盾构施工过程进行了数值模拟分析,对不同施工工况下桥梁墩顶的变形情况进行了研究,得到了高铁桥梁桥墩横桥向、顺桥向及垂向位移,并对该设计方案进行了技术分析和安全评估。  相似文献   

19.
为研究盾构下穿既有盾构隧道时施工参数的合理取值,以北京南水北调东干渠工程盾构隧道穿越既有地铁盾构隧道施工为依托,通过对既有隧道沉降的数值模拟和现场监测数据、盾构施工参数的分析,讨论了既有左右线隧道沉降存在差异的原因,总结了控制沉降的施工参数经验,阐述了既有隧道受穿越施工扰动的沉降规律,提出并验证了盾构隧道病害整治的方法.研究结果表明:受盾构施工参数的影响,既有左线隧道沉降23.9 mm,而右线仅沉降4.8 mm,沉降差异明显,但规律基本一致;盾构施工时,土仓压力调整级差不宜大于0.005 MPa,严格控制同步注浆压力在0.50 MPa,二次补浆压力在0.20~0.35 MPa,曲线段适当减缓掘进速度;已投入运营的地铁维修作业时间短,宜通过化学注浆治理管片接缝和螺栓孔处的渗漏水,压力注胶充填树脂治理道床裂缝.   相似文献   

20.
为降低近接线盾构施工对周围环境的影响,对南京城际轨道交通盾构隧道下穿句容河区间段复合地层的注浆参数进行研究。通过分析现场施工实测的土仓压力与注浆压力、注浆量之间的关系,确定以土仓压力为依据的注浆压力和注浆量的预测公式。研究结果表明:以土仓压力为依据的盾构注浆压力和注浆量可以很好地指导盾构注浆施工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号