首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
半穿甲型反舰导弹主要通过破片侵彻能力和爆炸冲击波能量对目标构成毁伤作用。通过对爆炸破片特性和舰船横舱壁结构破坏模式的分析,采用合适的材料模型和有限元仿真技术,对战斗部破片侵彻舰船横舱壁结构的过程和毁伤效应进行动态描述,分析横舱壁在高速破片侵彻下的破坏机理。考虑破片的可变形性,给出破片侵彻的能量变化和舱壁结构的吸能特性,获得侵彻速度与横舱壁结构吸能的关系曲线,并比较舱壁板和骨材的吸能情况随侵彻速度变化的规律,为侵彻载荷工况下现代舰船横舱壁的防护设计提供参考。  相似文献   

2.
《舰船科学技术》2015,(Z1):27-34
利用非线性瞬态动力学软件MSC/Dytran,对战斗部破片侵彻X型夹芯双层舱壁结构的过程进行数值模拟,分析在不同质量及初始速度下破片的剩余速度和舱壁结构的能量变化,总结了破片的剩余速度和舱壁结构的吸能随侵彻载荷参数变化的规律。最后在破片侵彻单层靶板剩余速度经验公式的基础上,运用等效厚度法对单层靶板剩余速度经验公式进行修正后,得到了破片侵彻双层舱壁结构的剩余速度公式,为双层舱壁结构工程化应用提供参考。  相似文献   

3.
文中对破片侵彻单层体单元靶板过程进行数值模拟研究,根据动态响应结果统计出破片侵彻靶板后的直径和靶板冲塞块厚度,从而建立破片墩粗率和靶板冲塞比关于破片直径和靶板厚度的关系;其次,结合数值仿真计算结果,对破片侵彻单层靶板剩余速度半经验公式中的参数进行计算,提出了破片侵彻双层横舱壁结构剩余速度预报公式,对公式的可靠性进行了验证.  相似文献   

4.
对加筋舱壁结构、平板夹芯舱壁结构以及蜂窝夹芯舱壁结构在高速破片侵彻作用下的抗侵彻性能进行数值仿真研究。分别对3种舱壁结构在侵彻作用下的动态响应进行分析,得到3种舱壁结构抗侵彻过程中的变形能,以及破片穿透3种舱壁结构后的剩余动能。计算结果表明:高速破片穿透加筋舱壁结构以及平板夹芯舱壁结构后仍具有较强杀伤力,因而需要改良舱壁结构,以更有效地抵御高速破片的冲击。蜂窝夹芯舱壁结构的抗侵彻性能高于加筋舱壁结构及平板夹芯舱壁结构。  相似文献   

5.
[目的]为实现船体结构的轻量化设计,采用金属夹层结构代替传统的加筋板结构,在保证原有结构承载性能的前提下,降低船体结构重量。[方法]针对单轴压缩作用下V型和I型金属波纹夹层板的承载性能问题,利用ABAQUS软件,对其进行屈曲分析和非线性有限元分析,并与传统加筋板结构的承载性能进行对比分析,[结果]得到了金属夹层板的承载性能与失效模式。计算结果表明,结构型式不同使得其屈曲失效模式存在差异;相同重量下,设计的I型金属波纹夹层板承载能力最强,加筋板与V型金属波纹夹层板次之。[结论]不同结构型式的轻量化减重效率有所不同,金属夹层板的轻量化规律可为其在船体结构设计中的选型与应用提供参考。  相似文献   

6.
田媛  刘均  汪浩  程远胜 《船舶力学》2016,20(10):1299-1308
文章对轻质波纹夹芯夹层板(Light Weight Corrugated-Core Sandwich Plates,LWCCSP)在不同入水速度下(1-6 m/s)的流-固耦合非线性动力学行为进行了分析。建立了气—液—固三相数值模型,通过显式动力求解获得了轻质波纹夹芯夹层板砰击压力的分布特点及结构变形规律,并与同等质量的加筋板在流固砰击下的非线性力学行为进行了对比,并研究了轻质波纹夹芯夹层板主要设计参数对其砰击响应的影响。研究结果表明,轻质波纹夹芯夹层板较同等质量的加筋板表现出更好的抗砰击性能;下面板厚度、芯层厚度的增加在一定范围内可以有效提高轻质波纹夹芯夹层板的抗砰击性能。  相似文献   

7.
罗本永  秦飞 《船舶工程》2022,(3):34-39+101
金属夹层结构在稳定性、抗爆抗冲击等方面具有良好的力学性能,在舰船领域有广阔的应用前景。为进一步研究夹层结构在轮印载荷下的应力特征,以特定单层甲板加筋板架结构为原型,设计相应的I型夹层结构作为研究对象,采用数值仿真进行分析,并通过缩比模型试验对计算结果进行验证。在此基础上,进一步研究夹层结构上下铺板厚度、芯层腹板厚度、高度和间距等参数变化对夹层结构强度和刚度的影响,提出相关建议,为舰船甲板夹层结构的设计和模型试验等提供参考。  相似文献   

8.
爆炸载荷下舱壁结构模型化技术研究及其结构响应分析   总被引:1,自引:1,他引:0  
舰船在海战中是最易受到攻击的目标,反舰导弹打入到舰船内部会产生大量的冲击波。因此在狭小的舱室内,爆炸冲击波对舰船舱壁结构的破坏不容忽视。本文运用大型有限元软件MSC.DYTRAN对舱壁结构进行数值仿真模拟。先对结构的有限元模型进行研究,确定其舱室个数,结构简化程度及建模所需的其他参数。然后对单、双层舱壁模型结构进行响应分析,单、双层舱壁模型结构的响应数值进行对比,得出双层舱壁结构模型的抗爆抗冲击能力明显优于单层舱壁结构模型,以上结论为舱壁结构的优化设计提供了参考。  相似文献   

9.
潜艇校核常用的是舰船通用规范,但考虑到潜艇某些结构主要承受压力载荷,可采用锅炉及压力容器规范,简称ASME规范,对潜艇的平面舱壁结构进行静强度校核。压力容器规范校核引入分析设计方法,将应力进行分类,对结构不同部位采用不同校核标准,较舰船通用规范能够更充分利用结构。压力容器规范主要适用于板壳结构,而舱壁主要为加筋板结构,所以舱壁校核使用ASME规范时还需要进行一些补充,从两类规范校核结果可以看出,补充后的ASME规范适用于潜艇舱壁结构。  相似文献   

10.
开展夹层板单元防护性能研究可为舰船防护结构设计提供指导。以某船底加筋板架为应用对象,设计出U型折叠式夹层板结构;利用MSC.Dytran对船底板架及夹层板结构在水下爆炸冲击载荷下的动态响应进行数值仿真分析,通过分析流-固耦合压力、损伤变形、速度、加速度、结构塑性吸能等性能参数,对比研究两结构的防护性能;分析夹层板在不同冲击强度下的损伤特性,面板厚度、夹芯板厚、夹芯与面板夹角、夹芯单元宽度、夹芯高度等结构参数对夹层板损伤变形、结构吸能等特性的影响。通过研究得到了U型夹层板在水下爆炸冲击载荷下的损伤特性、变形模式等,U型夹层板的防护性能明显优于传统加筋板架,夹芯层在夹层板抵抗水下冲击载荷中起到关键作用,结构参数对防护性能产生不同程度的影响。  相似文献   

11.
刘昆  邱伟健 《船舶工程》2020,42(12):98-104
为了提高空爆载荷作用下夹层板的抗爆能力,提升其在舰船和海工装备上的应用程度,本文提出了一种针对波形夹层板结构的优化方法,该方法以结构质量和在爆炸载荷作用下的结构应力、变形以及吸能作为评估标准,利用正交试验筛选出样本点,通过BP神经网络生成夹层板结构参数与评估标准间的响应面模型,用遗传算法对响应面模型进行多目标优化分析,得出全局最优解,形成一套夹层板的优化设计方案,这为夹层板抗爆结构优化设计提供了一种新的设计思路和优化方法。  相似文献   

12.
超大型矿砂船典型节点优化设计研究   总被引:4,自引:0,他引:4  
以两条超大型矿砂船为例,采用节点细化有限元分析方法,对一系列高应力区域进行研究。以双层底局部短纵桁与内底/外底纵骨连接处、槽型横舱壁与纵舱壁相交处、边舱平面横舱壁水平桁趾部等位置为例,对应力集中节点的结构优化方案进行了比较计算,得到的结论对这些区域的节点设计具有一定指导意义。  相似文献   

13.
随着油船共同结构规范(CSR)的推出,对油船的设计和开发影响很大,但业界讨论的大多是对规范实施中的变化、计算方法及计算工具等,如何详细分析评估油船结构节点的强度则较少提及。在此,基于CSR给出的油船结构节点细化分析的实施要求及衡准,以某5万吨级成品油船的槽形横舱壁顶凳底板与舷侧水平桁相交区域和槽形横、纵舱壁顶凳底板十字相交区域为例,对节点不同设计方案进行计算,经比较分析取得符合CSR的结构要求和衡准的设计方案。整个方案设计的过程及对油船典型节点的细化分析,可供同行在节点设计中参考。  相似文献   

14.
SPSM and its application in cylindrical shells   总被引:1,自引:0,他引:1  
In naval architectures, the structure of prismatic shell is used widely. But there is no suitable method to analyze this kind of structure. Stiffened prismatic shell method (SPSM) presented in this paper, is one of the harmonic semi-analytic methods. Theoretically, strong stiffened structure can be analyzed economically and accurately. SPSM is based on the analytical solution of the governing differential equations for orthotropic cylindrical shells. In these differential equations, the torsional stiffness, bending stiffness and the exact position of each stiffener are taken into account with the Heaviside singular function. An algorithm is introduced, in which the actions of stiffeners on shells are replaced by external loads at each stiffener position. Stiffened shells can be computed as non-stiffened shells. Eventually, the displacement solution of the equations is acquired by the introduction of Green function. The stresses in a corrugated transverse bulkhead without pier base of an oil tanker are computed by using SPSM.  相似文献   

15.
现代舰船的直升机起降时会通过轮胎将载荷作用于飞行甲板的板架上,这种载荷通常被称为轮印载荷。除此之外,相对于传统加筋板结构形式,I型夹层结构具有轻质、高比强度等优点,是一种可以应用于船舶飞行甲板的新型结构形式。本文针对轮印载荷局部重载和位置不确定的特点,设计了合理的试验贴片方案及加载程序,并将试验数据与理论值对比,分析误差原因,研究I型夹层板架结构的板格在四种典型位置轮印载荷作用下的静强度力学性能。试验结果表明,夹层板架结构在载荷附近测点的应力水平较大,同时其上面板沿船宽方向的弯曲应力大于沿船长方向的弯曲应力,而下面板2个方向的弯曲应力特性与上面板相反。这些结论对于I型夹层板架结构在轮印载荷下的力学性能研究具有重要意义。  相似文献   

16.
为实现金属夹芯结构甲板对传统板筋结构甲板的替代,采用有限元软件计算金属夹芯结构的失效模式,找到替代传统加筋板强力甲板的金属夹芯结构腹板面板设计要求准则,并在满足该准则要求的前提下以4种优化原则为筛选条件,通过枚举法对比整体欧拉应力,得到最佳的金属夹芯结构替代方案。当以传统加筋板结构为替换对象时,根据减重和降低高度等工程需求,对金属夹芯基本单元的设计提出3种原则,以欧拉应力最大为前提,原则1为不减高、不减重,原则2为减重、不减高度,原则3为减高、不减重。以板厚度为10 mm,球扁钢型号为10#的加筋板为研究对象,分别得到各设计原则下的最优替代方案。所作研究有助于找到由金属夹芯结构替代不同尺寸传统加筋板的最佳方案。  相似文献   

17.
潜艇全船耐压结构有限元应力分析   总被引:1,自引:0,他引:1  
本文对潜艇全船耐压结构进行了有限元应力分析,在此基础上,又进行了各局部结构的二级甚至三级离散有限元应力分析,比较了一般环肋圆柱壳、环肋圆锥壳、环肋锥-柱结合壳、横舱壁区域结构,耐压液舱区域结构典型点应力与现有解析算法结果的差异程度,得出了一些有工程实用意义的结论。  相似文献   

18.
冲击毁伤载荷作用下新型舰船舱壁结构型式研究   总被引:1,自引:1,他引:0  
本文对高速破片与冲击波载荷联合作用下典型舰船舱壁结构的动态响应过程进行数值模拟研究.基于结构吸能和破片平均剩余速度的评判标准,对比分析3种新型夹芯板双层舱壁(I型、X型、V型)抗冲击毁伤特性.研究结果表明,在相同高速破片与冲击波载荷联合作用下,破片穿透V型夹芯板双层舱壁结构的平均剩余速度最小,并且V型夹芯板结构吸能最多;3种新型夹芯板舱壁结构抗冲击性能均强于典型单层舱壁结构.  相似文献   

19.
推导了一种考虑芯板垂向压缩变形影响的双向加筋的约束阻尼夹层板有限元单元.其中,夹层板面遵循Mindlin一阶剪切变形理论的假定;芯板采用基于厚板理论的非线性位移模式, 各向位移沿板厚成抛物线分布, 并考虑了芯板的横向压缩变形;加强筋采用Timoshenko梁模型,考虑了其剪切变形的影响.根据层间位移连续和板、梁位移连续假设,将芯板和加强筋的位移用上下面板位移表示,推导了相应的位移应变关系, 继而根据Hamilton原理建立了控制方程.数值计算结果表明约束阻尼夹层加筋板有限元单元的推导是正确的;在约束阻尼夹层加筋板的固有频率研究中,考虑夹层板芯层的垂向压缩变形的影响是必要的.还讨论了芯板和加强筋的各个参数对板固有频率的影响.  相似文献   

20.
针对槽型舱壁分段船坞搭载时频繁出现开刀和换板的问题,分析分段制作工艺、异地流转和搁置过程中的工艺影响因素,总结出解决槽型舱壁分段制作和流转变形问题的新工艺,与传统工艺比较,新工艺可明显改善槽型舱壁分段制作精度和流转变形问题,可为船坞搭载节点赢得充足的时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号