首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
当进站信号机外方制动距离内进站方向为下坡道,若其平均换算坡度等于或大于6‰时,一般应设计接车进路的延续进路。  相似文献   

2.
进站信号机外方在列车制动距离范围内,进站方向为6‰的下坡道时,该接车方向应设计接车进路的延续进路,以防止列车进站后停不住车冲人另一咽喉,引起重大行车事故。大准线的十九沟站上行方向为6‰的下坡道,其平面示意图见图1。设计的6‰坡道延续进路在开通使用中,发现存在一些问题,现分析修改如下。[第一段]  相似文献   

3.
《6502电气集中电路》中规定:“当进站信号机外方制动距离范围内,进站方向为下坡道时,如果其平均换算坡道等于或大于0.6%(即6‰),则原则上应设计接车进路的延续进路,以防止列车进站后停不住车,引起重大行车事故……延续进路可通向安全线、牵出线、专用线和车站的进出口。”  相似文献   

4.
针对设计6‰下坡道接车延续进路电路,因使用出站信号机的列车信号复示继电器后接点不当,而存在安全隐患的问题,提出了取消出站信号机的列车信号复示继电器后接点,增设发车进路内方第一个轨道区段的轨道反复示继电器后接点的改进措施,解决了因故人工关闭出站信号机,引起进站信号机跟着关闭的问题,彻底消除了隐患,确保了行车安全。  相似文献   

5.
当进站信号机外方制动距离范围内进站方向为下坡道时,如果其平均换算坡度大于或等于6‰,应设计接车进路的延续进路,以防止列车进站后不能在规定的时间内停车而越过对方咽喉出站信号机.延续进路的技术条件要求其应与接车进路同时实现进路锁闭和接近锁闭,正常情况下列车进入股道3 min后,延续进路才能解锁.若延续进路为发车口,可以按压延续进路始端按钮,检查区间条件后,可开放出站信号机,此时的延续进路就是发车进路.  相似文献   

6.
1 现象 单线区段接车进路的延续进路转为发车进路时,进站信号机关闭. 以图1所示的某站为例,在S进站信号机外方制动距离范围内,进站方向为超过0.6%下坡道.  相似文献   

7.
研究目的:铁路技术规范规定遇到进站信号机外制动距离内进站方向超过6‰下坡道时应设接车进路的延续进路,以防列车冒进出站信号机后发生侧面冲撞事故.但是设置延续进路会带来车站列车通过能力的下降或增加工程投资等问题.客运专线铁路是否还需要采用该规定,对此进行分析与探讨,提出不宜设置的可能性,供工程设计者参考.研究结论:通过分析既有线6‰下坡道延续进路设置的由来,结合客运专线铁路车辆制动性能及列车运行控制装备水平的提高,提出了客运专线车站站外有超过6‰下坡道时无需设置延续进路的论点,突破了铁路技术规范的规定,对降低铁路轨道和信号工程投资、减少铁路用地、提高车站列车通过能力有现实意义.  相似文献   

8.
国内铁路既有线进站信号机外方制动距离内如有超过6‰的下坡道,接车进路普遍都设置了延续进路,以防止列车冒进出站信号机后发生侧面冲突事故。但这种规定被普遍沿用到了高速铁路的设计和运营当中,延续进路的设置会降低高铁车站的通过能力。针对高速铁路继续沿用既有铁路技术规范的规定,车站设置延续进路后对车辆到达能力影响进行分析。  相似文献   

9.
我国地域辽阔,铁路沿线情况不同,线路状况差别很大。北同蒲线地处山区,路况恶劣,本次北同蒲原太段增二线提速工程全线17个站,有5个站在进站信号机外制动距离内,进站方向j超过6‰的下坡道,原则上应设计接车进路的延续进路,以防止列车进站后无法停住。但在工程联锁试验  相似文献   

10.
分析了6‰下坡道延续过路电路,自动关闭接车进路进站信号机问题,揭示此类故障经常出现的原因,并根据现场实际指出了有关区间以及与区间有关联联锁控制条件的不足和改进措施。  相似文献   

11.
研究目的:《计算机联锁技术条件》(TB/T 3027—2002)规定:进站信号机外方制动距离内换算坡超过6‰下坡道的车站,须在接车进路末端设置延续进路。当接车进路末端设有安全线或隔开设备时,延续进路开向安全线或隔开设备;当接车进路末端无安全线或隔开设备时,延续进路开向正线。我国高速铁路目前有部分车站在进站信号机外、制动距离内换算坡超过6‰下坡,按照规定,须在接车进路末端设置延续进路。设置延续进路,对高速铁路车站通过能力有较大影响,因此有必要研究各种情况下车站的通过能力。本文系统分析计算了各种情况下延续进路对车站到到间隔、到通间隔、到发间隔、发到间隔的影响。研究结论:(1)延续进路对高速铁路车站通过能力影响较大,车站到达间隔将增加2.3 min以上,车站到通间隔也增加2.3 min以上;(2)设置安全线并不能很好地解决问题,高速铁路设置安全线不必要;(3)该研究成果对于高速铁路车站设计、能力计算具有参考价值。  相似文献   

12.
本文对6‰下坡道延续进路存在的三个问题进行了探讨,并提出了相应的改进意见和建议。  相似文献   

13.
随着铁路运量的增长,目前经常有大列(即超长列车,下同)通过中、小站的情况。对于一般的车站,接车、发车进路的解锁都可以正常进行;但对于有6‰下坡道的车站,由于6‰下坡道延续电路中没有考虑在超长列车通过时的解锁问题,致使列车通过后,延续进路不能正常解锁,给行车造成不便。因此,应当予以克服。  相似文献   

14.
刘琦 《铁道通信信号》2011,47(11):25-26
站场设计中,曾遇到2个距离较近并带有6‰下坡道的车站,经集中联锁后,形成了站内连续的6‰下坡道格局。现以实际车站为例,分析其延续进路设置方案。  相似文献   

15.
故障现象:在办理好下行Ⅰ股道的接车进路,下行进站信号开放后,又办理上行(6‰下坡道端,设有坡道延续进路电路)Ⅰ股道的接车进路,进路不能排出,取消此进路,再办理下行Ⅰ股道的发车进路.此时,使已开放的下行进站信号关闭、坡道照查表示灯PZBD点亮(其余股道也有同样的现象,属坡道电路的共性问题).  相似文献   

16.
坡道延续电路是保证6‰以上长大下坡道列车进站安全的有效措施。现以西安局阳安线徐家坝站为例,对坡道电路的常见问题做简要分析,供电务工作者参考。  相似文献   

17.
延续进路电路做为保证长大坡道行车安全的一项重要手段已被广泛采用。但由于该电路未定型,在具体的使用过程中经常遇到各种问题且较复杂。介绍了与6502电路相结合的延续进路电路存在问题的分析和处理方法。  相似文献   

18.
6502电气集中联锁中6‰坡道延续电路为非定型电路,在特定情况下可能存在一定安全隐患,电路经过修改,将能消除上述隐患。  相似文献   

19.
针对大于6‰下坡道高铁车站的延续进路防护问题,以成兰线某车站为例,研究基于Petri网模型的防护方法。以车站平面布置图为依据,建立相应的延续进路防护资源分配约束模型,包含6‰下坡道防护模型和延续进路防护故障诊断模型。通过6‰下坡道防护模型对延续进路涉及到的轨道区段占用权进行分配,实现延续进路的安全性防护;延续进路防护故障诊断模型采用形式化验证方法,通过被标记的故障库所对不可行的延续进路排列报错,实现延续进路运行计划的安全性验证。利用Petri网的可达性、有界性、安全性,对车站延续进路可能产生的列车碰撞和冲突进行仿真验证,验证结果可为列车运行计划的排列提供参考。  相似文献   

20.
漳平站是鹰厦线上较为重要的编组站,共90多组道岔、10个股道,另还有编组场、小能力驼峰场。图1漳平站站场图1漳平站X10列车信号错误开放的由栾原漳平站鹰潭方面和龙岩方面的进站信号机外方均有大于6‰的下坡道,故在6502电路设计中1-9股道均设计了延续进路(10道为机走线)。但随着运输量的扩大,不得不对漳平站进行修改,在2004年10月,将10道机走线厦门方向改为到发线,从图1可看出鹰潭方面和龙岩方面不可能向10股道接车(没有通路),所以修改设计中10股道没有进行延续进路的设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号