首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
本文针对桥总成生产实际问题对某驱动桥壳结构进行优化,通过建立驱动桥壳的有限元模型,分析比较了优化前后桥壳的静强度和静刚度,研究了优化后桥壳的模态,计算了优化后桥壳的疲劳寿命,并通过台架试验进行验证。  相似文献   

2.
本文通过参考IVECO 16—5111的驱动桥壳在垂直载荷下的疲劳试验的方法。对驱动桥桥壳的垂直弯曲疲劳强度进行了分析、评价,确保驱动桥桥壳有足够的强度和刚度,考核驱动桥桥壳的垂直疲劳寿命。  相似文献   

3.
本文通过介绍基于载荷谱的驱动桥桥壳CAE分析。驱动桥桥壳为整车承载的关键部件,失效后整车丧失行驶功能,并可能带来交通事故,因此桥壳在设计开发初期进行设计校核、台架试验及整车耐久路试。为减少初期设计风险,避免设计开发过程中迭代改进次数,缩短开发周期,桥壳前期CAE分析准确性至关重要。目前桥壳CAE分析基本采用QC/T533标准的垂直弯曲疲劳台架工况分析,不能分析桥壳纵向、横向强度、刚度及疲劳寿命,也不能分析桥壳附件如减震器支架等强度、刚度及疲劳寿命。基于载荷谱的桥壳CAE分析通过导入整车路试载荷谱,在桥壳受力位置施加作用力,分析桥壳所有位置强度、刚度及疲劳寿命是否满足设计要求。  相似文献   

4.
汽车驱动桥是汽车的主要传力件和承载件,与从动桥共同支承车架及其上的各种重量。并承受由车轮传来的路面反作用力和力矩。驱动桥壳又是主减速器、差速器及驱动车轮传动装置的外壳,因而驱动桥壳应具有足够强度和刚度。这要求后桥在强度、刚度、韧性上有较高水平,因此对桥壳的疲劳寿命要求颇为严格,利用计算机辅助工程(CAE),可以对汽车关键零部件进行寿命预测,可大大缩短开发周期,又能节省大量试验费用。本文建立驱动桥壳有限元模  相似文献   

5.
为满足驱动桥壳越来越高的性能需求,以TY-1型商用驱动桥壳为研究对象,通过HyperMesh软件建立以3D实体单元为基本单元的有限元模型,在此基础上对驱动桥壳结构的静力、模态性能进行分析,得出应力、应变分布情况和前5阶模态下的固有频率及振型。分析结果表明,桥壳强度和刚度基本满足设计要求,且不会与地面激励产生共振。对驱动桥壳进行疲劳寿命分析,得到疲劳寿命云图,结果表明桥壳疲劳强度满足要求,进一步验证了设计的合理性。  相似文献   

6.
在Pro/E环境下建立某汽车驱动桥壳3D模型,利用ANSYS软件,按国家驱动桥壳台架试验的标准,在计算机中采用有限元方法模拟其垂直弯曲刚性试验、垂直弯曲静强度试验。分析结果表明,该桥壳具有足够的静强度和刚度,产品设计满足要求。同时将有限元计算结果与试验结果进行了对比,吻合较好。  相似文献   

7.
为提高驱动桥壳的轻量化水平和道路行驶疲劳可靠性,对驱动桥壳进行6-Sigma稳健性多目标轻量化设计。首先,建立驱动桥壳的虚拟台架仿真模型,并进行垂直弯曲刚性和垂直弯曲静强度的仿真分析,将仿真得到的桥壳本体各测点变形量和关键受力点应力值与试验结果进行对比,以验证桥壳虚拟台架仿真模型的可信性。其次,建立驱动桥壳的最大垂向力仿真模型,结合耐久性强化路面下驱动桥壳板簧座处的垂向载荷谱,基于名义应力法,对驱动桥壳进行了道路行驶工况下的疲劳寿命分析。然后,选取驱动桥壳本体各截面壁厚为设计变量,基于熵权法和TOPSIS(Technique for Ordering Preferences by Similarity to Ideal Solution,TOPSIS)方法研究各壁厚变量对桥壳综合性能的影响。结合RBF(Radial Basis Function,RBF)近似模型和NSGA-Ⅱ算法(Elitist Non-dominated Sorting Genetic Algorithm,NSGA-Ⅱ)对驱动桥壳进行基于疲劳寿命的多目标确定性轻量化设计,获取Pareto最优解集,选取桥壳的优化方案。最后,基于蒙特卡罗模拟抽样方法和微存档遗传算法(AMGA)对驱动桥壳进行了多目标6-Sigma稳健性轻量化设计,得到桥壳稳健性优化方案。研究结果表明:稳健性优化后,驱动桥壳本体的疲劳寿命降低了12.3%,但和初始结构的疲劳寿命相比,仍提升了117%;桥壳本体疲劳寿命正态分布的标准方差下降了72.1%,说明桥壳本体的疲劳可靠性得到了大幅提升;桥壳本体的质量升高了1.8%,但和优化前的桥壳原结构相比,仍实现减重5.9%。  相似文献   

8.
某轻型汽车后桥壳体疲劳寿命分析   总被引:4,自引:0,他引:4  
针对驱动桥壳疲劳寿命小易预测的问题,提出了基于有限元的桥壳疲劳寿命预测方法,并模拟桥壳试验条件下的疲劳载倚.借助疲劳寿命分析软件估算出桥壳各部分的疲劳损伤情况.与桥壳台架试验结果进行对比町知,试验数据和计算结果基本一致,由此表明基于有限元技术的桥壳疲劳寿命预测可行.  相似文献   

9.
装载机驱动桥壳的载荷谱与疲劳寿命分析   总被引:2,自引:0,他引:2  
为对装载机驱动桥壳进行疲劳寿命分析,建立了一套动态测试系统,对一台ZL50装载机的驱动桥进行动力学测试,得到其典型工况下的应变与应力的时间历程,编制成典型载荷谱,并计算了该桥壳的疲劳寿命.计算结果表明:该桥壳具有较好的疲劳寿命;但疲劳寿命分析的关键区域与最大静应力区域并不一致.  相似文献   

10.
桥壳有限元模型建立及分析探讨   总被引:1,自引:0,他引:1  
介绍了桥壳有限元模型的建立,利用所建立的斯太尔桥壳模型进行静强度、静刚度分析,将有限元分析结果与静刚度台架试验结果进行比较,并将所建有限模型应用于桥壳的改进设计分析中,指出解决桥壳的强度问题单纯增加桥壳厚度并不是最好的解决方案。  相似文献   

11.
通过模拟车桥的工况及参考IV ECO16-5220车桥总成疲劳试验的方法,对车桥总成进行疲劳试验。确定施加不同扭矩值时主减速器和差速器等部件的强度极限,由此确定车桥总成的疲劳寿命,从而得出汽车车桥总成的安全系数,为车桥的设计、生产提供可靠的依据。  相似文献   

12.
针对汽车驱动桥焊接桥壳结构特点,采用热点应力法及CAE技术对其焊接结构强度耐久性进行了模拟分析。为验证热点应力法模拟焊接结构的有效性,对3种标准焊接件、2种驱动桥桥壳焊接部位的强度和耐久性进行了试验与模拟对比分析,结果表明,该方法对焊接部位关键点应力的模拟有效性达70%以上,焊接部位的耐久性模拟寿命均值与试验结果量级相当。  相似文献   

13.
对SX2190驱动前桥进行了系列疲劳寿命试验,探讨了焊缝、凸缘和螺栓对前桥疲劳寿命的影响,试验表明:凸缘和螺栓的结构、焊接质量及抛丸强化对前桥疲劳寿命有较大影响,通过对凸缘结构改进以及销子孔上移降低螺栓拉伸应力,并采取桥壳整体抛丸强化等措施显著提高桥壳的疲劳寿命。  相似文献   

14.
液压胀形汽车桥壳强度分析   总被引:1,自引:0,他引:1  
以0.75 t货车液压胀形桥壳为例,利用有限元分析软件ANSYS对其许用强度、静强度、疲劳强度(寿命)及其承载能力进行分析,得到液压胀形桥壳强度的变化规律。研究为液压胀形桥壳优化设计提供可靠的参考。  相似文献   

15.
本文用三种单一路面载荷谱对EQ140汽车驱动桥壳进行了强化程序疲劳试验,并对疲劳断口进行了宏观和微观分析,从而找出了它的破坏机理的原因,并提出了改善EQ140汽车驱动桥壳疲劳强度的措施。  相似文献   

16.
对某驱动前桥断裂进行了多角度系统分析,探讨了半轴套管材质、热处理过程控制和桥壳塞焊工艺对前桥疲劳寿命的影响,试验及分析表明:热处理过程对套管的冲击功有较大影响,桥壳塞焊孔的加工定位误差易引起塞焊孔处应力变化甚至增加应力集中,通过重新制定套管热处理工艺,优化桥壳塞焊孔位置,缓解了最大拉应力区域的应力叠加效应,上述措施有效改善了某桥管韧性,目前该类型驱动前桥运行正常。  相似文献   

17.
基于整车动力学仿真的后桥壳疲劳寿命分析与改进   总被引:3,自引:0,他引:3  
针对某越野车在改型过程中后桥壳在台架疲劳试验时出现局部开裂的情况,应用ADAMS/Car建立了整车动力学模型,进行动力学仿真,得出危险工况冲击载荷下桥壳的受力情况.采用ANSYS Workbench对桥壳进行了疲劳寿命计算,结果与试验吻合.分析其存在的不足,并提出了改进方案.对改进后的桥壳再次进行疲劳计算,满足设计要求,试制后进行台架试验,寿命达到国家标准要求.  相似文献   

18.
为验证某货车驱动桥壳是否会出现断裂和塑性变形,利用CATIA软件对某货车驱动桥壳建立三维实体模型,通过传递数据接口,把模型导入有限元分析软件ANSYS,对驱动桥壳进行了2.5倍满载轴荷下的应力分布和变形情况分析。计算结果为:板壳和凸缘连接处最大应力为186MPa,小于材料屈服强度295MPa;轮距最大变形量为0.405728mm/m,小于国家规定的1.5mm/m,该驱动桥壳强度满足设计要求。表明驱动桥半轴套筒与轮毂内轴承的接触面和桥壳与凸缘连接处容易发生损坏,该方法为进一步优化改进设计提供了可靠的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号