首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ship resistance issues are related to fuel economy, speed, and cost efficiency. Air lubrication is a promising technique for lowering hull frictional resistance as it is supposed to modify the energy in the turbulent boundary layer and thereby reduce hull friction. In this paper, the objective is to identify the optimum type of air lubrication using microbubble drag reduction(MBDR)and air layer drag reduction(ALDR) techniques to reduce the resistance of a 56-m Indonesian self-propelled barge(SPB). A model with the following dimensions was constructed: length L = 2000 mm, breadth B = 521.60 mm, and draft T = 52.50 mm.The ship model was towed using standard towing tank experimental parameters. The speed was varied over the Froude number range 0.11–0.31. The air layer flow rate was varied at 80, 85, and 90 standard liters per minute(SLPM) and the microbubble injection coefficient over the range 0.20–0.60. The results show that the ship model using the air layer had the highest drag reduction up to a maximum of 90%. Based on the characteristics of the SPB, which operates at low speed, the optimum air lubrication type to reduce resistance in this instance is ALDR.  相似文献   

2.
The application of multi-hull ship or trimaran vessel as a mode of transports in both river and sea environments have grown rapidly in recent years.Trimaran vessels are currently of interest for many new high speed ship projects due to the high levels of hydrodynamic efficiency that can be achieved,compared to the mono-hull and catamaran hull forms.The purpose of this study is to identify the possible effects of using an unsymmetrical trimaran ship model with configuration(S/L) 0.1-0.3 and R/L=0.1-0.2.Unsymmetrical trimaran ship model with main dimensions: L=2000mm,B=200 mm and T=45 mm.Experimental methods(towing tank) were performed in the study using speed variations at Froude number 0.1-0.6.The ship model was pulled by an electric motor whose speed could be varied and adjusted.The ship model resistance was measured precisely by using a load cell transducer.The comparison of ship resistance for each configuration with mono-hull was shown on the graph as a function of the total resistance coefficient and Froude number.The test results found that the effective drag reduction could be achieved up to 17% at Fr=0.35 with configuration S/L=0.1.  相似文献   

3.
The effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials under longitudinal moment were extensively studied using reliability and sensitivity calculations of a composite ship hull which was sagging.The reliability indices and failure probabilities of the ship in three kinds of failure modes (buckling,material failure,and ultimate collapse) were calculated by the surface response method and JC method.The importance factors of random variables in stochastic models,such as the model errors in predicting the ultimate longitudinal strength of ship and the longitudinal bending moment that the ship withstands,as well as the stochastic characteristics of materials in the models used,were calculated.Then,the effects of these random variables,including the stochastic characteristics of materials on the reliability index and the failure probability of ships which were sagging,were discussed with their importance factors.The results show that the effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials should be considered during the reliability assessment of composite ships.Finally,some conclusions and recommendations were given for high-speed ship design and safety assessment.  相似文献   

4.
In this paper,numerical modeling and model testing of a complex-shaped remotely-operated vehicle(ROV) were shown.The paper emphasized the systematic modeling of hydrodynamic damping using the computational fluid dynamic software ANSYS-CFXTM on the complex-shaped ROV,a practice that is not commonly applied.For initial design and prototype testing during the developmental stage,small-scale testing using a free-decaying experiment was used to verify the theoretical models obtained from ANSYS-CFXTM.Simulation results are shown to coincide with the experimental tests.The proposed method could determine the hydrodynamic damping coefficients of the ROV.  相似文献   

5.
The research performed in this paper was carried out to investigate the computational procedure to design seakeeping optimized ship hull form. To reach the optimized hull form, four stages should be done, which consists of: generate alternative hull form, seakeeping calculations, objective functions and optimization techniques. There are many parameters that may be determined in ship hull form optimization. This paper deals with developed strip theory for determining the seakeeping performance, genetic algorithm (GA) as optimization method, high order equations for curve fitting of the hull form and finally reaching to the minimum bow vertical motion in regular head waves. The Wigley hull is selected as an initial hull and carried to be optimized. Two cases are considered. For the first case, the only form coefficients of the hull (CB, CM, Cw, Cp) are changed and main dimensions (L, B, 7) are fixed. In the second case both hull form and main dimensions are varied simultaneously. Finally, optimized hull form and its seakeeping performances are presented. The results of optimization procedure demonstrate that the optimized hull forms yield a reduction in vertical motion and acceleration.  相似文献   

6.
采用遗传算法进行球鼻艏优化的流体动力计算(英文)   总被引:1,自引:0,他引:1  
Computational fluid dynamics(CFD) plays a major role in predicting the flow behavior of a ship.With the development of fast computers and robust CFD software,CFD has become an important tool for designers and engineers in the ship industry.In this paper,the hull form of a ship was optimized for total resistance using CFD as a calculation tool and a genetic algorithm as an optimization tool.CFD based optimization consists of major steps involving automatic generation of geometry based on design parameters,automatic generation of mesh,automatic analysis of fluid flow to calculate the required objective/cost function,and finally an optimization tool to evaluate the cost for optimization.In this paper,integration of a genetic algorithm program,written in MATLAB,was carried out with the geometry and meshing software GAMBIT and CFD analysis software FLUENT.Different geometries of additive bulbous bow were incorporated in the original hull based on design parameters.These design variables were optimized to achieve a minimum cost function of "total resistance".Integration of a genetic algorithm with CFD tools proves to be effective for hull form optimization.  相似文献   

7.
Ship hull form of the underwater area strongly influences the resistance of the ship.The major factor in ship resistance is skin friction resistance.Bulbous bows,polymer paint,water repellent paint(highly water-repellent wall),air injection,and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships.Micro-bubble injection is a promising technique for lowering frictional resistance.The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction.The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat(FPB) 57 m type model with the following main dimensions:L=2 450 mm,B=400 mm,and T=190 mm.The influence of the location of micro bubble injection and bubble velocity was also investigated.The ship model was pulled by an electric motor whose speed could be varied and adjusted.The ship model resistance was precisely measured by a load cell transducer.Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number.It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction,and the drag reduction caused by the micro-bubbles can reach 6%-9%.  相似文献   

8.
Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound source without exact orientation, this method horizontally rotates the array exactly once, performs eigen value decomposition for the covariance matrix of received data, then computes the gain and phase error according to the formulas. In the near field, using the same single sound source, it is necessary to rotate the array horizontally at most three times, build equations according to geometric relations, then solve them. Using the formula proposed in this paper, spherical waves are modified into plane waves. Then eigen values decomposition is performed. These two calibration methods were shown to be valid by simulation and are fast, accurate and easy to use. Finally, an analysis of factors influencing estimation precision is given.  相似文献   

9.
Sloshing of liquid can increase the dynamic pressure on the storage sidewalls and bottom in tanker ships and LNG careers. Different geometric shapes were suggested for storage tank to minimize the sloshing pressure on tank perimeter. In this research, a numerical code was developed to model liquid sloshing in a rectangular partially filled tank. Assuming the fluid to be inviscid, Laplace equation and nonlinear free surface boundary conditions are solved using coupled FEM-BEM. The code performance for sloshing modeling is validated against available data. To minimize the sloshing pressure on tank perimeter, rectangular tanks with specific volumes and different aspect ratios were investigated and the best aspect ratios were suggested. The results showed that the rectangular tank with suggested aspect ratios, not only has a maximum surrounded tank volume to the constant available volume, but also reduces the sloshing pressure efficiently.  相似文献   

10.
Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound source without exact orientation, this method horizontally rotates the array exactly once, performs eigen value decomposition for the covariance matrix of received data, then computes the gain and phase error according to the formulas. In the near field, using the same single sound source, it is necessary to rotate the array horizontally at most three times, build equations according to geometric relations, then solve them. Using the formula proposed in this paper, spherical waves are modified into plane waves. Then eigen values decomposition is performed. These two calibration methods were shown to be valid by simulation and are fast, accurate and easy to use. Finally, an analysis of factors influencing estimation precision is given.  相似文献   

11.
In this paper, added resistances acting on a hull of non ballast water ship(NBS) in high waves is discussed. The non ballast water ships were developed at the laboratory of the authors at Osaka Prefecture University, Japan. In the present paper, the performances of three kinds of bow shapes developed for the NBS were theoretically and experimentally investigated to find the best one in high waves. In previous papers, an optimum bow shape for the NBS was developed in calm water and in moderated waves. For a 2 m model for experiments and computations, the wave height is 0.02 m. This means that the wave height is 15% of the draft of the ship in full load conditions. In this paper, added resistances in high waves up to 0.07 m for a 2 m model or 53% of the full load draft are investigated. In such high waves linear wave theories which have been used in the design stage of a ship for a long time may not work well anymore, and experiments are the only effective tool to predict the added resistance in high waves. With the computations for waves, the ship is in a fully captured condition because shorter waves, λ/Lpp0.6, are assumed.  相似文献   

12.
13.
In this study, the passage of waves through pile groups with different arrangements is investigated using a three-dimensional(3D)numerical model. For the simulations, waves of three different heights of 36, 58, and 81 mm, a fixed period of 0.88s, and a fixed wave length of 1.128 m were used. To simulate the waves and flow pattern through the piles, Reynolds-averaged Navier–Stokes(RANS) equations of fluid motion were solved based on the finite volume method(FVM). Piles were defined as obstacles in the rectangular domain using the fractional area/volume obstacle representation(FAVOR) method. The volume-of-fluid(VOF) and re-normalization group(RNG) methods were used to simulate the free surface and turbulence phenomenon, respectively. By performing different numerical simulations, the effect of coastal pile arrangements on wave pattern was studied and was compared with existing experimental data, and an acceptable agreement was achieved.  相似文献   

14.
In this research,a commercial CFD code "Fluent" was applied to optimization of bulbous bow shape for a non ballast water ships(NBS).The ship was developed at the Laboratory of the authors in Osaka Prefecture University,Japan.At first,accuracy of the CFD code was validated by comparing the CFD results with experimental results at towing tank of Osaka Prefecture University.In the optimizing process,the resistances acting on ships in calm water and in regular head waves were defined as the object function.Following features of bulbous bow shapes were considered as design parameters: volume of bulbous bow,height of its volume center,angle of bow bottom,and length of bulbous bow.When referring to the computed results given by the CFD like resistance,pressure and wave pattern made by ships in calm water and in waves,an optimal bow shape for ships was discovered by comparing the results in the series of bow shapes.In the computation on waves,the ship is in fully captured condition because shorter waves,λ/Lpp 0.6,are assumed.  相似文献   

15.
16.
This paper presents an analytical scheme for predicting the collapse strength of a flexible pipe, which considers the structural interaction between relevant layers. The analytical results were compared with a FEA model and a number of test data, and showed reasonably good agreement. The theoretical analysis showed that the pressure armor layer enhanced the strength of the carcass against buckling, though the barrier weakened this effect. The collapse strength of pipe was influenced by many factors such as the inner radius of the pipe, the thickness of the layers and the mechanical properties of the materials. For example, an increase in the thickness of the barrier will increase contact pressure and in turn reduce the critical pressure.  相似文献   

17.
The surface wave generated by flow around a ship hull moving near free surface of water is simulated numerically in this study. The three-dimensional implicit finite volume method(FVM) is applied to solve Reynolds averaged Navier-Stokes(RANS) equation. The realizable k-ε turbulence model has been implemented to capture turbulent flow around the ship hull in the free surface zone. The volume of fluid(VOF) method coupled with the Stokes wave theory has been used to determine the free surface effect of water. By using is a six degrees of freedom model, the ship hull’s movement is numerically solved with the Stokes wave together. Under the action of Stokes waves on the sea, the interface between the air and water waves at the same regular pattern and so does the pressure and the vertical velocity. The ship hull moves in the same way as the wave. The amplitude of the ship hull’s heave is less than the wave height because of the viscosity damping. This method could provide an important reference for the study of ships’ movement, wave and hydrodynamics.  相似文献   

18.
A robust adaptive control strategy was developed to force an underactuated surface vessel to follow a reference path,despite the presence of uncertain parameters and unstructured uncertainties including exogenous disturbances and measurement noise.The reference path can be a curve or a straight line.The proposed controller was designed by using Lyapunov’s direct method and sliding mode control and backstepping techniques.Because the sway axis of the vessel was not directly actuated,two sliding surfaces were introduced,the first one in terms of the surge motion tracking errors and the second one for the yaw motion tracking errors.The adaptive control law guaranteed the uniform ultimate boundedness of the tracking errors.Numerical simulation results were provided to validate the effectiveness of the proposed controller for path following of underactuated surface vessels.  相似文献   

19.
In this research,liquid sloshing behavior in a 2-D rectangular tank was simulated using ANSYS-FLUENT software subject to single or multiple-coupled external excitations(such as sway coupled with roll,and sway and roll coupled with heave).The volume of fluid(VOF) method was used to track the free surface of sloshing.External excitation was imposed through the motion of the tank by using the dynamic mesh technique.The study shows that if the tank is subjected to multiple coupled excitations and resonant excitation frequencies,liquid sloshing will become violent and sloshing loads,including impact on the top wall,will be intensified.  相似文献   

20.
Small water-plane area twin-hull(SWATH) has drawn the attention of many researchers due to its good sea-keeping ability.In this paper,MMG's idea of separation was used to perform SWATH movement modeling and simulation;respectively the forces and moment of SWATH were divided into bare hull,propeller,rudder at the fluid hydrodynamics,etc.Wake coefficient at the propellers which reduces thrust coefficient,and rudder mutual interference forces among the hull and propeller,for the calculation of SWATH,were all considered.The fourth-order Runge-Kutta method of integration was used by solving differential equations,in order to get SWATH's movement states.As an example,a turning test at full speed and full starboard rudder of ‘Seagull' craft is shown.The simulation results show the SWATH's regular pattern and trend of motion.It verifies the correctness of the mathematical model of the turning movement.The SWATH's mathematical model is applied to marine simulator in order to train the pilots or seamen,or safety assessment for ocean engineering project.Lastly,the full mission navigation simulating system(FMNSS) was determined to be a successful virtual reality technology application sample in the field of navigation simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号