首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
通过对预应力梁桥自振频率分析,揭示桥梁刚度或质量分布导致桥梁结构自由振动频率发生变化。总结桥梁的无阻尼自由振动计算式,实现自由振动频率和振型的求解,为结构的振动特性分析提供依据。  相似文献   

2.
结构振动频率是动力特性的重要指标,反映了结构的整体刚度、组成体系和质量分布等。在桥梁的动载试验中,对于刚度较大的桥型通常需要使用激励法获得其振动频率,而跑车和跳车试验是主要的激励方式。利用拉普拉斯变换,通过多点叠加法,考虑激励源质量并获得了车重在不同位置时的简支梁桥振动频率理论解。结果表明,车重对简支梁桥的振动频率的影响不可忽略,车辆移动过程中,桥梁振动频率从跨中向支座两端逐渐增大。以动载试验中常用的三轴加载车为例,利用有限元法对比验证了方法的正确性,提出的方法可应用于桥梁振动测试。  相似文献   

3.
为揭示高速铁路桥梁结构振动产生与传递机理,分别采用数值方法与现场实测研究时速300 km/h高速列车诱发高架箱梁结构振动特性。首先,建立高架简支箱梁三维有限元动力学模型,分析列车以300 km/h速度通过时,高架箱梁结构振动特性及传递规律。然后,选择沪昆高铁高安—南昌区间某高架轨道,对高速列车引起的桥梁结构振动进行现场测试,并将有限元计算结果与实测结果进行对比。结果表明:有限元分析与现场实测结果在20~400 Hz吻合良好。桥梁结构振动的优势频率为31.5~125 Hz,峰值频率为31.5~63 Hz,在16 Hz处有一个明显的波谷;当频率大于200 Hz时,桥梁结构加速度振级急剧下降,可以针对31.5~63 Hz频率进行桥梁结构减振设计。桥梁顶板最大加速度振级为88.59~100.48 dB,对应的峰值频率为31.5 Hz和40 Hz;桥梁底板最大加速度振级为82.96~94.29 dB,对应的峰值频率为31.5 Hz和63 Hz,箱梁底板振动对桥梁结构振动的贡献最大。  相似文献   

4.
对某振感较大的钢桁架人行桥进行了自振特性测试,并利用有限元分析软件Midas Civil建立桥梁结构的空间分析模型,通过基于实测数据的模态分析结果与理论分析结果的比较,确定桥梁结构的刚度和自振频率是否满足规范要求,并对桥梁上部结构进行改造,通过增加结构刚度来改善桥梁的自振频率和振动特性,为此类桥梁类似问题的解决提供参考。  相似文献   

5.
随着汽车载重量和车流量的增加,为了保证桥梁结构的安全性,定期桥梁检查必不可少。拟采用动力荷载试验的手段,运用振动测试系统,采集环境激励作用下桥面竖向振动的加速度响应信号,并分析计算桥梁主体结构竖向振动的固有频率。结果表明:左幅桥实测频率小于右幅桥实测频率,右幅桥动力性能相对左幅桥较好且与静载试验结果相匹配,较好地反映了桥梁的实际状况。  相似文献   

6.
通过对某立交桥进行动载试验,测定该桥结构的自振频率及振动加速度,并与理论计算的结果及相应规范的要求进行比较,通过限制动力响应值法对该桥进行舒适性评价。并通过避开敏感频率法改善桥梁频率,从而达到改善桥梁振动舒适性。  相似文献   

7.
芜湖长江大桥连续板桁结合梁的动力特性研究   总被引:1,自引:0,他引:1  
简要论述了振动模态分析方法,并指出有限元分析模型在结构整体监测中的重要性。根据芜湖长江大桥连续板桁结合梁的结构特点,建立了桥梁的三维空间有限元分析模型,然后采用ANSYS有限元分析程序对大桥的动力特性进行了分析,获得了连续梁桥的自振频率和振型;并与实测结果进行了对比。  相似文献   

8.
在役混凝土桥梁承载力判定和损伤评估研究   总被引:1,自引:0,他引:1  
介绍了在役混凝土梁桥的振动理论、桥梁承载力判定和损伤评估方法。并结合现场实测讨论了混凝土桥梁可靠性检测。通过静、动荷载试验得到桥梁结构的频率等动力特性。对在役钢筋混凝土桥承载力判定方法进行了实践应用,对同类型桥梁的检测评估及加固具有重要的指导意义。  相似文献   

9.
为探讨不同列车速度下矮塔斜拉桥斜拉索振动与桥梁整体振动之间的相关性,基于列车-线路-桥梁耦合振动理论与动力学模型,以某主跨115 m+95 m的铁路矮塔斜拉桥为工程背景,考虑斜拉索与桥梁整体结构之间的相互作用,通过数值积分得到梁体、桥塔振动响应以及斜拉索局部振动响应.结果表明:列车荷载作用下索梁振动相关性问题实质上是一个能量传递过程,当拉索端点位移激励频率与其自振频率接近时,能量易于在索梁间传递;当列车以225~350 km/h的设计时速通过桥梁、列车荷载的激励频率与斜拉索自振频率接近时,斜拉索在外激励作用下会产生共振,但共振幅值不大(斜拉索局部振动幅值小于3 mm).   相似文献   

10.
针对既有铁路钢桁梁桥原有设计方案刚度不足的问题,提出了三种可行的加固设计方案。采用有限元软件MIDAS建立了加固前后桥梁结构空间振动分析模型并进行了动力模态分析,通过对比分析加固前后桥梁结构的自振频率变化及列车移动活载作用下桥梁结构动力挠度,对比验证了三种加固方案的有效性,并给出了实际工程推荐方案。  相似文献   

11.
桥梁的振动特性是分析结构动荷载行为的基础,它能体现结构的质量分布情况及抵抗弹性变形的能力,是吊桥分析振动响应、抗风与抗震设计的基础。以唐山湾跨海大桥为工程背景,利用有限元分析软件Midas/Civi对影响自锚式悬索桥动力性能的结构参数进行模拟分析。认为:(1)垂跨比及主缆抗拉刚度对反对称竖弯及对称竖弯频率影响较大,对横弯频率及扭转频率影响较小。(2)恒载集度对自锚式吊桥整体特征振型频率的影响大于主梁抗弯刚度。(3)拉索抗拉刚度及桥塔抗弯刚度的变化对自锚式悬索桥结构的各阶特征振型频率影响较小。研究结论可为自锚式悬索桥优化设计及理论研究提供参考。  相似文献   

12.
针对运行列车引起的轨道交通桥梁结构噪声问题,总结了国内外轨道交通桥梁结构噪声的辐射特性、预测方法、产生机理、控制措施及工程应用等方面的研究成果,展望了未来的研究重点和发展方向。研究结果表明:轨道交通桥梁结构噪声主要集中于200 Hz以下的低频段,峰值一般出现在40~100 Hz;如何使用更先进的声源识别技术将桥梁结构噪声从综合噪声中分离出来,是准确分析桥梁结构噪声频谱特性和空间分布特性的关键;现有的桥梁结构噪声预测方法包括声学边界元法、统计能量分析等,声学边界元法的计算效率较低,统计能量分析主要用于钢桥噪声预测,发展大跨度混凝土桥梁结构噪声预测方法是当务之急;桥梁结构噪声峰值主要与桥梁结构的中高频局部振动特性和轮轨系统输入到桥梁结构的振动能量有关,桥梁的中高频局部振动特性对声辐射特性的影响机理尚未形成统一认识;目前常用的桥梁结构噪声控制措施有轨道减振措施和桥梁减振措施2类,桥梁减振措施对结构噪声的控制效果一般,轨道减振措施虽然能够有效降低桥梁结构噪声辐射,但同时可能引起轮轨噪声与道床二次结构噪声的增大,建议在保证经济性的条件下,综合运用各种控制措施,以取得最优的降噪效果。   相似文献   

13.
基于不同残差的桥梁结构模型修正   总被引:2,自引:0,他引:2  
由于建模和分析过程中的众多不确定因素,有限元分析预测的响应与实际结构响应不可避免地存在偏差,因此必须对有限元模型进行修正.文中提出了一种基于不同残差的桥梁结构模型修正方法,介绍了频率残差和振型残差的概念,目标甬数的确定和设计参数的选择方法.对一根简支梁进行了仿真分析,结果表明该方法简单可行.基于振动测试数据,对一个桥梁工程实例进行模型修正,修正后的桥梁有限元模型的动力特性更加趋近现场振动测试值.  相似文献   

14.
单肋斜撑钢管混凝土拱桥动力特性分析   总被引:1,自引:0,他引:1  
单肋斜撑钢管混凝土拱桥是近年来出现的一种新型桥梁,以广梧高速双凤至平台段K111+495跨线桥为例,采用ANSYS有限元软件,对该桥的振动频率及振型进行了分析,讨论了拱肋抗压、抗弯刚度对其动力特性的影响,并就行人舒适性问题进行了探讨.结果表明:该桥面外刚度相对较小,在桥梁振动中首先出现拱肋面外对称侧弯,桥梁前10阶振型中有4阶为拱肋的面外振动;桥梁拱肋面外自振基频小于桥梁整体竖向自振基频,说明桥梁拱肋面外刚度与全桥竖向刚度相差较大;桥梁的扭转频率出现在第5阶,说明结构的抗扭刚度较大,容易满足刚度要求;改变拱肋抗压刚度对于桥梁各阶振型频率影响极小,而改变拱肋抗弯刚度则对各阶振型频率有一定的影响;但拱肋抗弯、抗压刚度的变化均不会影响该桥的振型;本桥的一阶竖向频率为2.111Hz,舒适性指标不满足国际上CEB(1993),SIA(1989),“立体横断施设技术基准·同解说”(1979),对行人舒适性有一定的影响,值得注意.  相似文献   

15.
桥梁结构损伤识别是桥梁结构安全监测系统的核心,结构振动模态的变化能够直接反应桥梁结构损伤的程度,分析提出基于结构振动模态变化率作为桥梁结构损伤识别指标,从而识别结构的损伤程度以及损伤位置。  相似文献   

16.
简支梁桥有载频率分析   总被引:6,自引:0,他引:6  
根据桥梁固有频率的定义求解桥梁振动微分方程,给出了列车荷载作用下简支梁桥有载频率的解析表达式.研究表明,桥梁有载频率与其上作用车辆的简化模型、过桥车辆数、行车速度以及桥梁跨度等有关:1辆车简化为4个或2个轮对时,桥梁有载频率很接近,比较符合实际情况;车辆总长超过桥梁跨度时,桥梁有载频率呈稳定的周期性变化;桥梁有载频率随时间变化,与车辆在桥上的位置有关,且行车速度越快,频率变化越快。  相似文献   

17.
混编或空载货车通过中等跨度桥梁横向振动机理分析   总被引:1,自引:0,他引:1  
通过对现场实测桥梁(中等跨度上承式及半穿式钢桁梁)振动波形的分析,探讨了混编列车通过桥梁发展脱轨事故的原因。提出当车速为60~70km/h时,带有磨耗型踏面的空载货车横向蛇行振动频率为1.5~2.9Hz,与桥梁带截横向自振频率相符,引起共振。  相似文献   

18.
桥梁在车辆作用下的振动是一种多因造成的振动,与桥梁动力特性、车辆特性、车速、车-桥耦合作用、桥面平整度等诸多因素有关。通过对导致赵家大桥冲击振动的实测数据的系统分析和研究,结果表明:车辆冲击对于非特大跨桥梁,当车速在10~20 km/h时对桥跨会造成更多的动响应,冲击系数峰值出现在10~20 km/h;当大桥的自振频率与试验用三轴车自振频率相接近时,即使在桥面平整度良好的情况下,车-桥频率耦合振动也容易导致冲击振动异常。汽车冲击振动异常的影响因素众多,而多种因素的联合作用是导致大桥异常振动的决定性因素,这种联合作用效应不是各因素简单的加权关系,当多种条件处于耦合匹配状态时,会使冲击系数成倍的增大。  相似文献   

19.
为了缩小波形钢腹钢箱-混凝土组合箱梁桥有限元值与实测值之间的偏差,提出了采用响应面法和Fmincon算法相结合的桥梁有限元模型修正方法. 以甘肃景中机场连接线的一座波形钢腹钢箱-混凝土组合箱梁桥为研究对象,首先对其进行静、动载试验,获得其弯曲振动频率、挠度及应变的实测值;其次分别采用实体和板壳模式的有限元建模获得该桥相应的弯曲振动频率、挠度及应变的计算值,通过与实测值对比分析后,选取较为精确的实体模式有限元模型作为修正的初始有限元模型;随后在合理选择设计参数的基础上,通过中心复合试验设计得到相应的结构响应,采用最小二乘法拟合得到结构响应和设计参数之间的二次多项式回归方程,并构造目标响应与相应响应实测值差值的目标函数;最后运用Fmincon算法对目标函数进行迭代计算,获得参数修正值及该桥的基准有限元模型. 研究结果表明:采用响应面法和Fmincon算法相结合的方法对波形钢腹钢箱-混凝土组合箱梁桥的有限元模型进行修正切实可行,具有修正过程简单、计算收敛速度快等特点,计算时间在0.25~0.75 s内,一阶弯曲振动频率相对误差由4.85%依据不同响应组合修正到1.62%~2.91%不等;通过对遗传算法和Fmincon算法的比较发现,Fmincon算法显著提高了模型修正效率,可为实际工程中该类桥梁的有限元建模分析及力学性能分析提供参考.   相似文献   

20.
桥头跳车对桥梁的振动影响,通过分析得知其结果会导致桥梁结构冲击系数增大,为了有效控制这种影响,本文在桥梁设计、搭板设计、软基沉降等方面加以阐述防治桥头跳车的相关措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号