首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
鉴于在车辆换道切入的场景中,自动驾驶车辆容易出现频繁的误减速、误避让,而造成通行能力和乘员舒适性的下降,提出一种基于主旁车动态博弈的切入场景决策规划算法。在行为决策层,根据切入场景中主旁车的冲突性关系,联立相关车辆运动方程建立整体系统的运动模型,构建考虑旁车状态的切入博弈模型,设计安全性和舒适性收益函数,进行驾驶行为博弈,输出行为决策结果。在轨迹规划层,根据车辆间距构建避障约束条件,以Sigmoid函数轨迹的变曲率和速度切向矢量的时间分量来构建车辆动力学约束。同时以加权收益方式联合考虑驾驶习惯和舒适性等需求,建立轨迹规划数学模型,求解得到满足上层博弈决策要求的运动轨迹。Carsim-Simulink联合仿真结果表明,在不同的初始条件下主车与切入的旁车能进行多种形式的合理的交互决策,准确完成切入场景下的运动规划任务,车辆能准确跟踪输出的轨迹,更符合一般驾驶习惯,提高了车辆的舒适性。  相似文献   

2.
针对无信号控制路段自动驾驶车辆和行人冲突判别建模,选择武汉市6处无信号控制路段作为调查地点,从而保证足够的车辆及行人数据量,采用视频采集技术获取交通流量以及行人与车辆的行为数据.利用决策树分析方法将决策分为两各层级,分别为行人过街决策和冲突判别,利用二元Logit模型建立面向自动驾驶车辆的路段人车冲突判别模型,对行人和自动驾驶车辆之间可能发生的冲突概率进行计算.建立的模型可以作为自动驾驶技术中的一部分,能够帮助自动驾驶汽车具备人类驾驶员与行人间的通行权沟通能力,使自动驾驶汽车控制系统更加智能且接近人类的判断能力.  相似文献   

3.
自动驾驶系统需具备响应驾驶人意图且有效执行驾驶人意图的能力,以解决人机协作系统中存在的人机冲突、人机优势融合等问题。提出决策层“以人为主”、执行层“以机为首”的人机协作关系,构建包含驾驶人意图识别模块、基于意图识别的轨迹规划模块与轨迹跟踪控制模块的人机协作一体化控制系统框架,并重点对轨迹规划模块与轨迹跟踪控制模块开展研究。首先,结合双向长短期记忆神经网络(Bi-directional Long Short Term Memory,Bi-LSTM)与注意力机制模型建立换道轨迹规划模型;在改进人工势场算法中引入模型预测控制并建立避险轨迹规划模型。其次,通过开展驾驶模拟器试验建立换道与避险驾驶行为数据集,为拟人化模型训练和模型参数确定提供支撑。然后,综合考虑车辆状态变量、控制输入与输出以及道路结构参数等约束条件,构建基于最优转向前轮输入的线性时变模型预测轨迹跟踪控制器,实现对规划轨迹的精准跟踪。最后,基于驾驶模拟器搭建人机协作系统硬件在环测试平台,对轨迹规划模块与轨迹跟踪控制模块开展硬件在环测试与验证。结果表明:换道与避险规划轨迹光滑且平稳,轨迹跟踪控制过程中,车辆航向角与前轮转角变化平稳;所构建的轨迹规划与轨迹跟踪控制模块在确保安全性前提下可实现不同场景中的车辆运动控制需求。  相似文献   

4.
为了正确刻画智能网联环境下的车辆换道行为,提出基于BP神经网络的车辆换道决策模型.分析了交通流中车辆换道行为,以HighD自然驾驶数据集为数据来源,筛选出1 900组车辆换道和未换道信息作为模型的训练与验证,利用高斯滤波方法拟合目标车辆换道轨迹和横向位移轨迹,选择影响车辆换道决策的7个参数作为模型输入,建立BP神经网络...  相似文献   

5.
为了实现智能车辆最优的轨迹跟踪控制,最大程度的利用滑移率和地面附着系数实现智能车辆的动力学控制,文章提出了考虑滑移率的轨迹跟踪控制方法。根据车辆行驶特性,建立动力学方程,计算运动过程中的轮速和横摆角,并结合滑移率对车辆动力学的影响,基于最优滑移率设计了控制系统,以制动工况为例,实现制动车速工况下的最优控制。基于车辆二自由度模型,运用Matlab建立二维空间整车运动轨迹模型,得到车辆运动仿真轨迹。仿真结果验证了数学模型的准确性和正确性。考虑滑移率和车辆动力学的轨迹跟踪控制更具真实准确,文中数学模型及设计的控制系统对车辆跟踪控制有参考价值。  相似文献   

6.
感知周围车辆的驾驶行为并识别其意图将成为新一代高级驾驶辅助系统的重要组成部分。针对现有方法只考虑单一驾驶行为且可扩展性和可伸缩性差,提出一种基于稀疏表示理论的驾驶行为感知字典模型(Driving Behavior Perception Dictionary Model, DBPDM)。将车辆行驶状态视为时间序列,设计基于自回归积分移动平均(Autoregressive Integrated Moving Average,ARIMA)结合在线梯度下降(Online Gradient Descent, OGD)优化器的在线预测模型,提出基于驾驶行为预测的意图识别构架(Intention Recognition Framework, IRF)。首先,采用图Lasso方法估计典型驾驶行为的稀疏逆协方差矩阵构建驾驶行为字典库,并采用Logdet散度方法计算各逆协方差矩阵的差异获得行为感知字典模型。然后,基于在线预测模型对目标车辆的行驶轨迹和运动状态进行预测,结合主车车辆的行驶状态作为稀疏表示的观测信号,以获取预测时域内的目标车辆意图。最后,采用NGSIM (Next Generation SIMulation)真实驾驶数据对模型进行开发和测试。研究结果表明:所提出的行为感知模型能对6种典型驾驶行为构建行为字典,在分类准确率上与现有方法相比有明显提升,对换道和转向行为样本的平均识别准确率分别达到99.1%和92.9%;该模型能够在相对早期阶段准确地识别出车辆行为;在线预测算法能较好预测出目标车辆的行驶轨迹和运动状态,从而间接地反映出其在预测时域内的驾驶意图;IRF可在换道和转向行为开始前的1.5 s较为准确地识别出目标车辆的意图,平均识别准确率超过80%。  相似文献   

7.
唐晓峰  杨林  袁静妮 《汽车工程》2020,42(5):567-573
针对自动驾驶车辆的多阶段多约束轨迹优化问题,根据高斯伪谱法的思路,建立了基于场景的环境模型和车辆动力学模型,设置了车辆动力学约束、速度约束等各种状态约束,包括自动驾驶在每一阶段的起始状态和终了状态等参数的约束条件。采用高斯伪谱法通过将控制变量和状态变量进行离散化来获得其近似表达式,从而将自动驾驶的轨迹规划问题转化成性能指标的优化问题,最终求得了自动驾驶车辆的安全、有效的路径轨迹。研究结果表明:高斯伪谱法具有计算精度高、求解速度快的特点,能在考虑各种约束条件下,实现多阶段轨迹优化。  相似文献   

8.
为实现左右舵不同驾驶习性驾驶人在港珠澳大桥时空混行环境下快速、有效识别并预测行驶车辆在应急条件下的运动状态,提出了一种考虑右舵驾驶行为的模型加数据混合运动预测方法。首先,提取港珠澳大桥通行车辆的跟驰与换道原始轨迹数据并分析,挖掘左右舵驾驶行为在直道及变道属性下的长短时特性;其次,结合最大信息系数算法(MIC)对比所提取特征与2类驾驶行为的关联程度,并求解关键区分特性下高斯混合模型(GMM)对于左右舵驾驶行为应急反应的倾向性概率;最后,将2种驾驶行为的车辆运动状态在直道行驶的差异特征作为长短时记忆(LSTM)神经网络的输入,建立数据驱动下的直道横向偏移预测模型,并在具有差异化驾驶行为的车辆直道位姿信息预测基础上,串联建立模型驱动下的变道概率预测模型。对青州航道桥实际车流监测数据的测试结果表明:所提方法可基于行驶车辆的横向偏移和偏航率等特征快速、准确识别左右舵驾驶行为;对于不同特征输入下的直道偏移预测结果,所预测左舵驾驶行为的均方根误差(RMSE)、改进的豪斯多夫距离(MHD)与决定系数(R2)的最优评估分别为0.578 7、0.468 1与0.870 7,右舵驾驶行...  相似文献   

9.
王伊欣  张希  刘冶 《公路》2022,67(3):225-231
为了探究城市路网中混有智能网联车辆(CAV)的交通流特性,研究CAV不同渗透率分布下对路网通行能力的影响。应用智能驾驶模型(IDM)和协同自适应巡航控制模型(CACC)分别作为人工驾驶车辆(HDV)和智能网联车辆的纵向速度更新规则,并建立考虑车辆到信号交叉口距离影响的横向换道规则。推导基于各渗透率等级路段占路网长度比例下的混合交通宏观基本图模型(MFD),通过SUMO仿真验证模型有效性。最后针对模型中的比例参数进行敏感性分析。结果表明:混合交通MFD可以用于异质交通流组成的城市路网宏观交通状态的有效估计与通行能力分析。当CAV渗透率均匀时,在路段渗透率高于30%时,路网通行能力提升显著;当CAV渗透率非均匀时,异质路网的通行能力随着渗透率等级较高路段比例的增加而逐渐提高,100%CAV路段比例的影响尤为显著。混合交通MFD为混有CAV的城市交通调控和CAV在路网中的路径规划提供理论参考。  相似文献   

10.
为实现周围车辆行驶轨迹的准确预测,运用深度学习方法,设计了一种基于图神经网络与门控循环单元(GRU)的驾驶意图识别及车辆轨迹预测模型。驾驶意图识别模型将车-车间的交互关系构造成时空图,运用图神经网络学习其交互规律,并利用Softmax函数计算出不同驾驶意图的概率;轨迹预测模型采用编码-解码的GRU网络,编码器将车辆历史轨迹信息进行编码并融合识别的驾驶意图信息,再通过解码器实现轨迹预测。最后采用NGSIM数据集对模型进行训练和验证,结果表明:所提出的模型能够更好地识别车辆的驾驶意图,且考虑驾驶意图的车辆轨迹预测模型能够有效提高预测精度。  相似文献   

11.
为了验证自动驾驶汽车决策结果的安全性,提出一种具有自主决策和交互能力的行驶模型生成方法,该行驶模型作为背景车被用于构建自演绎仿真场景来测试自动驾驶汽车的连续决策能力。首先,以强化学习为基础、结合遗传与进化思想,创新地设计并生成了具有自主决策和交互能力的不同风格行驶模型;然后,在模型构建阶段分别训练生成了保守、普通和激进3种风格的行驶模型,其中普通风格行驶模型的训练参数来源于自然驾驶数据集highD的车辆参数分布,保证了该行驶模型的真实性;最后,在普通风格行驶模型的基础上设计并训练出了具有显著激进特征的激进风格行驶模型,以增强自演绎场景的复杂性和测试效果。结果表明:在模型真实性方面,以highD数据集中的跟车速度、车头间距、换道时刻下碰撞时间等参数的分布为真值,研究所生成的普通风格行驶模型的参数分布与真值的平均相似程度为88%,相较于基于规则的智能驾驶人模型(IDM)提升了20.3%;在场景测试性方面,以被测系统为主要责任方的碰撞次数为评估指标,研究生成的不同风格行驶模型所构成的自演绎场景的测试性约是由IDM构成的基线场景的7倍。因此,设计和生成的行驶模型所构成的自演绎场景可以有效支撑面向自动驾驶决策系统的仿真测试。  相似文献   

12.
提高人类驾驶人的接受度是自动驾驶汽车未来的重要方向,而深度强化学习是其发展的一项关键技术。为了解决人机混驾混合交通流下的换道决策问题,利用深度强化学习算法TD3(Twin Delayed Deep Deterministic Policy Gradient)实现自动驾驶汽车的自主换道行为。首先介绍基于马尔科夫决策过程的强化学习的理论框架,其次基于来自真实工况的NGSIM数据集中的驾驶数据,通过自动驾驶模拟器NGSIM-ENV搭建单向6车道、交通拥挤程度适中的仿真场景,非自动驾驶车辆按照数据集中驾驶人行车数据行驶。针对连续动作空间下的自动驾驶换道决策,采用改进的深度强化学习算法TD3构建换道模型控制自动驾驶汽车的换道驾驶行为。在所提出的TD3换道模型中,构建决策所需周围环境及自车信息的状态空间、包含受控汽车加速度和航向角的动作空间,同时综合考虑安全性、行车效率和舒适性等因素设计强化学习的奖励函数。最终在NGSIM-ENV仿真平台上,将基于TD3算法控制的自动驾驶汽车换道行为与人类驾驶人行车数据进行比较。研究结果表明:基于TD3算法控制的车辆其平均行驶速度比人类驾驶人的平均行车速度高4.8%,在安全性以及舒适性上也有一定的提升;试验结果验证了训练完成后TD3换道模型的有效性,其能够在复杂交通环境下自主实现安全、舒适、流畅的换道行为。  相似文献   

13.
为实现高速公路环境下车辆的安全决策,提出一种结合深度强化学习和风险矫正方法的行为决策模型。构建决策模型所需的目标车辆及周围车辆的行驶信息,并引入自注意力安全机制,提高车辆在复杂高速场景下对周围潜在危险车辆的注意力,综合考虑行车效率、避障等因素以设计强化学习的奖励函数。此外,为解决强化学习在决策过程中缺乏安全性保障的问题,设计风险矫正模块对决策动作进行风险评估和矫正,避免危险决策的执行。在Highway-env仿真平台上对提出的决策模型进行训练和测试。试验结果表明,提出的决策模型有较高的行车安全率和鲁棒性,其驾驶效率也优于以规则、模仿学习和单纯深度强化学习为基础的决策方法。  相似文献   

14.
为提升智能汽车的自主决策能力,使其能够学习人的决策智慧以适应复杂多变的道路交通环境,需要揭示驾驶人决策机制。首先通过对自然驾驶数据的分析,发现在车辆行驶过程中能够反映驾驶人决策行为的主要运动特征参数存在极值现象,而产生极值现象的内在动因是驾驶人遵循“趋利避害”的基本决策机制,即驾驶过程中驾驶人力图实现机动性和安全性综合性能最优。受自然界包括物理和生物行为上的众多极值现象遵循最小作用量原理的启发,提出驾驶人决策机制遵循最小作用量原理的假设。随后建立抽象描述驾驶过程的物理模型,并提出最小作用量决策模型(Least Action Decision-making Model,LADM),通过与传统驾驶决策模型(经典跟车模型和换道模型)对比,分析结果显示LADM模型更具通用性。最后开展了实车试验,采集20名驾驶人在自由行驶、跟车行驶和邻车切入3种工况下的试验数据,分析计算并检验了不同驾驶人行车过程的理论最小作用量和实际作用量。试验结果表明:驾驶人在驾驶过程中的实际作用量与最小作用量之间无显著性差异,体现出驾驶人在行车过程中对安全和高效具有共性追求,验证了驾驶人决策机制遵循最小作用量原理。  相似文献   

15.
矿用无人运输车辆作业环境恶劣,存在大曲率弯道、坡道等非结构化道路明显特征,对无人化运输控制要求高。为改善PID等传统控制算法适应性问题,提高无人驾驶轨迹跟踪的车辆横纵向控制精度,提出一种纯跟踪与PID结合的多点预瞄横向控制、考虑模糊控制表参数拟合的纵向控制方法,减少控制参数的同时提高算法效果。根据传统控制算法设计基础控制器,结合基础算法优势进行横向与纵向控制算法设计,通过硬件在环仿真和实车测试验证算法的性能。试验结果表明,横向控制算法与斯坦利算法相比,车辆路径跟踪精度有明显改善,纵向控制方面,速度跟随误差<1 km/h,保证了车辆驾驶时的平稳性与舒适性。  相似文献   

16.
整车在环仿真测试方法可以安全、高效地验证复杂环境和极端工况等场景下自动驾驶汽车性能的有效性,基于此研发一种基于整车在环仿真的自动驾驶汽车室内快速测试平台,该平台由前轴可旋转式转鼓试验台、试验台测控子系统、虚拟场景自动生成子系统、虚拟传感器模拟子系统、驾驶模拟器、自动驾驶汽车和测试结果自动分析评价子系统组成。通过在试验台滚筒上独立加载转矩模拟车辆行驶阻力,可动态模拟不同的路面附着系数,同时利用坡度、侧倾和转向随动机构可模拟车辆俯仰角、侧倾角和航向角3个自由度;采用虚拟现实技术柔性集成车辆动力学模型、传感器仿真、复杂道路交通环境及测试用例仿真,模拟多种道路交通场景,并通过传感器仿真及数据融合等技术快速测试自动驾驶汽车智能感知与行为决策等性能指标。将自动驾驶汽车、虚拟仿真场景和试验台耦合构建一个闭环系统,完成了多项关键技术研发,包括:多自由度高动态试验台结构设计、虚拟测试场景自动重构方法和传感器数据模拟及注入方法,可满足在各种场景下测试自动驾驶汽车整车性能的需求。此外,为验证快速测试平台的有效性,以U-turn轨迹跟踪控制为研究实例,基于简化的车辆运动学模型和模型预测控制算法,在平台上搭建U-turn场景并对自动驾驶汽车的轨迹跟踪控制算法性能进行大量测试。结果表明:自动驾驶汽车室内快速测试平台可以真实地模拟汽车在道路上的运行工况,自动驾驶汽车在虚拟场景中的轨迹跟踪效果良好,与参考轨迹的偏差小于8%,证明了该测试平台检测方法的有效性。  相似文献   

17.
为了使自动驾驶汽车在人机混驾环境下能安全、高效地左转通过无信号交叉口,在借鉴人类驾驶人左转时会对周围车辆驾驶意图进行提前预判的基础上,提出了一种基于周围车辆驾驶意图预测的自动驾驶汽车左转运动规划模型。首先将无信号交叉口处周围车辆的驾驶意图分为左转、右转、直行3种类型,利用相关向量机预测周围车辆驾驶意图,以概率形式输出意图预测结果并实时更新,进一步界定自动驾驶汽车与周围车辆的潜在冲突区域并判断是否存在时空冲突;接着,在充分考虑他车速度、航向及车辆到达冲突区域边界距离的基础上建立基于部分可观测马尔可夫决策过程的自动驾驶汽车左转运动规划模型,生成一系列期望加速度;最后,基于Prescan-Simulink联合仿真平台搭建无信号交叉口仿真场景,对所提左转运动规划方法进行仿真验证,将基于博弈论的运动规划方法、基于人工势场理论的运动规划方法与所提出的方法进行比较,并选取行进比例达到1所用的时间和碰撞次数作为评价指标。研究结果表明:基于相关向量机的驾驶意图预测方法可在自动驾驶汽车到达交叉口之前准确预测出他车驾驶意图;基于部分可观测马尔可夫决策过程的左转运动规划方法能够通过速度调整策略实现人机混驾环境下自动驾驶汽车与周围车辆在无信号交叉口处的交互;不同算法对比效果表明,所提左转运动规划方法在自动驾驶汽车与不同数量周围车辆交互的仿真场景下均可有效避免碰撞事故发生并提高自动驾驶汽车左转通过无信号交叉口的效率。  相似文献   

18.
试验车道选择行为是自动驾驶车辆最基本的决策行为之一,利用车联网技术可以使车道选择结果更加全面、合理.首先,对高速公路自动驾驶车辆车道选择决策过程进行分析,并以车联网感知通信范围内的车辆的平均速度、重车比例及前往车道的理想换道时间为主要指标创建成本函数,根据计算结果输出最优车道序列;然后,以Gipps安全驾驶模型为基础,...  相似文献   

19.
目前,针对搭载自动驾驶功能的智能网联汽车,国内外正在广泛开展特定设计运行条件下的道路测试、示范应用等工作,其安全测试与评估方法已经成为当前行业研究的热点和难点。从第三方视角出发,重点针对汽车智能化、网联化面临的主要安全风险,将智能网联汽车的安全测试与评估分为基础测评和监测调整两个阶段。在基础测评阶段,综合评估产品对过程保障及测试要求的符合情况;在监测调整阶段,基于对车辆实际安全状态的监测,适时调整安全评估结果。在此基础上,重点梳理了基于场景的测试、安全评估、监测等测评方法的内在逻辑及原则要求。分别阐述了功能安全、预期功能安全、网络安全和数据安全等过程保障方法及主要要求,以及模拟仿真、封闭场地、实际道路、网络安全和数据安全、软件升级、数据记录等测试方法及主要要求。提出的方法为特定设计运行条件下,具有自动驾驶功能的智能网联汽车综合安全评估提供了参考。  相似文献   

20.
随着世界范围内对自动驾驶汽车及其相关产业发展的高度重视,自动驾驶车辆上路已成为重点领域协同创新、构建未来交通系统的重要载体。本文主要研究自动驾驶车辆不同渗透率参与的混合交通流受场景天气条件的耦合影响因素下的复杂车辆行为逻辑分析,影响机理解析,跟驰模型及通行能力模型构建等。最后我们通过SUMO仿真实验对模型进行嵌套及分析,以期对自动驾驶汽车在测试及上路引导中起到重要理论决策依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号