首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
本文中提出一种基于Radau伪谱法的能量管理策略优化法,利用全局插值多项式对系统中状态变量与控制变量进行逼近,由插值多项式的导数近似动力学方程中状态变量的微分方程,将最优控制问题(OCP)转化为待优化变量的非线性规划(NLP)问题进行求解。以加入惩罚因子的电池寿命模型为目标函数,将复合电源电动汽车中的电池使用寿命(电池可循环次数)与单一电池能量源在NEDC循环工况下对比分析,结果表明,伪谱法优化的复合电源可减小电池组的安时流通,缩小电流、功率波动范围,其电池组功率、超级功率均与需求功率出现了分段的线性关系,且复合电源中电池等效寿命较单一电池能量源提高25.61%,本文中为复合电源的能量管理策略提供了一种快速、稳定的优化方法,为匹配最优系统参数奠定基础,还可作为其他优化策略的评估基准。  相似文献   

2.
为提高纯电动汽车两挡自动变速器(AMT)的换挡平顺性,针对一款电动汽车无离合器两挡AMT进行详细的换挡过程动力学分析,采用线性二次型调节器(LQR)最优控制算法确定同步阶段的最优换挡力,进行换挡台架试验。试验结果表明,在换挡时间增幅不大的前提下,变速器输出轴转速波动峰值较未优化时降低了48.4%,基于LQR的换挡力最优控制能够有效降低换挡冲击,改善换挡品质。  相似文献   

3.
为了使汽车冲击度和离合器滑摩功能够满足换挡品质的要求,文章对装有双离合器自动变速器(DCT)的汽车进行了动力学仿真分析,建立其变速器动力传动系统模型。并针对变速器直线型换挡过程中冲击度和滑摩功难以同时达到最优的问题,采用遗传算法对离合器油压值进行优化控制,获得油压-时间的最优控制曲线,将优化后的控制曲线代入仿真模型,结果表明,冲击度和滑摩功均达到较为理想的状态。  相似文献   

4.
某乘用车配置的自动变速器,其换挡摇臂仅有P挡和非P挡两个物理位置,其他挡位(R/N/D)通过换挡器本体的电信号发出,从整个换挡系统来看,P挡与R挡之间的切换力不仅包含换挡器本体P挡与R挡切换力,还包含变速器P挡与非P挡之间的切换力,而R/N/D之间的挡位切换力仅由换挡器本体提供,换挡器本体换挡力的产生主要由螺旋弹簧和齿形板的配合实现,换挡器换挡力在设计过程中不仅要考虑变速箱P挡和非P挡切换带来的影响,而且要考虑与R/N/D之间切换时主观感受的衔接,本文旨在说明换挡器本体换挡力是如何实现与变速器换挡力进行匹配,以及如何进行局部优化以获得良好主观感受。  相似文献   

5.
为研究变速器加油量对换挡过程中二次冲击的影响,在同步器换挡试验台上对某款变速器2→1挡进行不同加油量下50次换挡试验的二次冲击统计。结果表明,随着变速器加油量的不断增加,二次冲击发生概率、持续时间以及换挡冲量均会增加。  相似文献   

6.
为了降低换挡过程中的二次冲击,提升用户体验,以降低换挡过程中输出端当量转动惯量为思路,文章设计了一款单向离合器式手动变速器。新型变速器将输出轴设计成两段,并以单向离合器相连,全部前进挡齿轮安装在输出轴的前段,与中间轴上各齿轮啮合传动完成变速变扭功能。运用ADAMS仿真软件,对其换挡过程进行动态仿真分析,获得新型手动变速器换挡二次冲击曲线,通过与传统手动变速器换挡二次冲击曲线的对比,揭示了新型手动变速器在提高换挡平顺性方面的优势,并通过仿真分析探究花键齿锁止角及棱线角与换挡二次冲击的关系,通过合理选择锁止角与棱线角数值,进一步降低换挡二次冲击。  相似文献   

7.
雅阁轿车自动变速器故障排除   总被引:1,自引:0,他引:1  
1.自动变速器换挡冲击 故障现象:一辆装备自动变速器的本田雅阁轿车,连续行驶10万km没有更换过自动变速器油。该车在换挡过程中,出现个别挡有严重的换挡冲击故障。  相似文献   

8.
随着纯电动汽车的发展,装备多挡变速器的纯电动汽车可以降低车辆对于电机性能的要求,纯电动汽车传动系统的多挡化渐渐成为一种趋势;因此为实现纯电动汽车自动变速器快速、平稳、可靠地换挡,本文对纯电动汽车变速器换挡控制策略进行研究,对当前市场上常用的两种换挡控制策略进行研究和对比,并在实车上进行测试和验证,列出了当前两种控制方法的优缺点。  相似文献   

9.
所谓自动变速器换挡冲击,是指变速杆从P(或N)位进入D(或R)位时,汽车的振动较大;在行驶中,换挡的瞬间车辆明显"发闯",即前后窜动。严重的换挡冲击不仅使车辆在换挡的瞬间发生振动,而且能够听到类似铁锤砸缸的声音。例如有的轿车在三挡升入四挡时,发动机的转速突然升高至3500r/min左右,而车速反而有下降的趋势。自动变速器的换挡冲击分为换挡延迟和换挡过快两种情况。所谓换挡过快,是指由于某种原因,造成变速器没有二挡或者三挡,从一挡直接跳到四挡,降挡时也是从四挡跳回到一挡,这样的汽车无论提速还是降速都会出现明显的冲击现象。  相似文献   

10.
自动变速器换挡冲击是一种比较常见的故障现象,主要表现为车辆在起步时,由停车挡(P)或空挡(N)挂入前进挡(D)或倒挡(R)时,车辆出现较严重的振动;或车辆在行驶过程中,自动变速器升挡瞬间车辆有较明显的冲击感。造成自动变速器换挡冲击的主要原因有发动机怠速过高,主油路压力过高,换挡执行元件严重磨损,阀体及蓄压器有故障,换挡电磁阀有故障,自动变速器控制单元有故障,自动变速器油液不足或品质不良等。下面结合案例探讨自动变速器换挡冲击的解决办法。  相似文献   

11.
纯电动轿车AMT换挡过程协调匹配控制方法   总被引:1,自引:0,他引:1  
为实现装备机械式自动变速器(AMT)的纯电动轿车能够快速、准确、平稳地换挡,以建立的换挡过程数学模型为基础,详细分析了换挡过程不同阶段换挡冲击产生的机理,提出了摘挡前驱动电机切换至自由模式的转矩控制方法,确定了摘挡后驱动电机调速目标值和执行机构最优运动速度,提出了挂挡完成后驱动电机转矩恢复方法。针对换挡过程驱动电机的协调控制问题,提出了整车控制器控制驱动电机参与换挡过程的综合协调匹配控制方法。为了验证控制策略的正确性,研制开发了纯电动轿车用AMT样机,并进行了样车道路试验。试验结果表明:所制定的控制策略能很好地实现挡位的自动平顺切换,且换挡时间短。  相似文献   

12.
AMT换挡冲击产生机理与对策研究   总被引:1,自引:1,他引:0  
文中研究了自动机械变速器(AMT)在换挡时同步器未起作用而产生冲击的问题,分析了产生换挡冲击的机理并确定了换挡执行机构的最优运动速度.据此,提出了消除冲击的换挡控制方法,并在某载货车的变速器上进行实验验证.结果表明该方法能够有效避免车辆在换挡过程中产生冲击的现象.  相似文献   

13.
A novel hybrid optimal algorithm for DC motor of electro-mechanical Automated Manual Transmission (AMT) is presented. It combines non-linear time optimal controller and optimal Linear Quadratic Regulator (LQR) consequently used at different shifting stages. The working principle and dynamic characteristics of the AMT system are firstly presented, and the model of the DC motor is analyzed in detail. The non-linear time optimal controller is designed to explore the potential of the motor and minimize the gear shifting time. While the optimal LQR is then adopted at the final shifting stage to avoid overshoot and increase system robustness. Based on the position control algorithm of the actuators, the coordinated shifting control strategy is also proposed. Both simulation and vehicle test results demonstrate that, this control algorithm could decrease the shifting time and improve the shift quality effectively.  相似文献   

14.
手动变速器汽车在使用时换挡频繁,换挡性能的好坏直接影响驾驶员对车型的评价.本文从静态换挡、动态换挡等四个方面分别阐述了对手动变速器换挡性能评价的方法,并提供了目标参考值.  相似文献   

15.
针对优化恒定下滑角的直线连续下降进近(CDA)飞行航迹问题,采用高斯伪谱法将 Bolza型最优控制问题(OCP)转化成飞行器不同襟翼状态下的非线性规划问题,得出时间优化连续下降进近飞行航迹.对连续下降进近的飞行器建立动力学模型,确定飞行位置的状态变量及航迹角的控制变量,提出时间最小化性能指标.选取 B737-800机型,在终端区和飞行状态限制条件下利用 GPOPS工具仿真高斯伪谱法时间优化航迹,确定 TOD 位置和飞行速度控制曲线.并与其它 CDA 航迹算法进行比较研究.对比分析终端区17条 CDA 航迹及1条传统阶梯式进近航迹的进近状态,结果显示,采用高斯伪谱法获得的 CDA 航迹相比于传统进近航迹的下降时间缩短了16.67%,且优于其它算法获得的 CDA 航迹.验证使用高斯伪谱法优化 CDA 航迹可节省下降时间,提高航迹预测的精度和飞行控制系统的计算效率.   相似文献   

16.
文章以某纯电动客车为研究对象,根据城市-郊区道路条件,驱动电机和电动客车整备参数已定,满足动力性能前提,以两档变速器传动比为变量,利用人群搜索算法(SOA)找到与电机相匹配的传动比,优化能量利用率,提出一种优化设计思路,并利用仿真软件进行仿真分析。仿真结果表明,此设计优化思路为两档纯电动客车设计出最优的传动比,满足道路行驶要求,能量利用率优异。  相似文献   

17.
Hybrid electric vehicles are powered by an electric system and an internal combustion engine. The components of a hybrid electric vehicle need to be coordinated in an optimal manner to deliver the desired performance. This paper presents an approach based on direct method for optimal power management in hybrid electric vehicles with inequality constraints. The approach consists of reducing the optimal control problem to a set of algebraic equations by approximating the state variable which is the energy of electric storage, and the control variable which is the power of fuel consumption. This approximation uses orthogonal functions with unknown coefficients. In addition, the inequality constraints are converted to equal constraints. The advantage of the developed method is that its computational complexity is less than that of dynamic and non-linear programming approaches. Also, to use dynamic or non-linear programming, the problem should be discretized resulting in the loss of optimization accuracy. The propsed method, on the other hand, does not require the discretization of the problem producing more accurate results. An example is solved to demonstrate the accuracy of the proposed approach. The results of Haar wavelets, and Chebyshev and Legendre polynomials are presented and discussed.  相似文献   

18.
精确的换挡负载是机械式自动变速器(AMT)执行机构选型的重要依据。本文中构建了一种结构简单、成本低廉的测试变速器选、换挡力的试验台,并对关键部件进行选型。为永磁同步执行电机提出一种转速控制算法,以实现精确的速度控制;在测试试验台上对不同挡位的换挡过程进行换挡力测试,并分析换挡速度对换挡负载的影响。结果显示试验台可有效准确地测试变速器的换挡负载,为手动挡变速器的设计与优化以及AMT执行器的选型提供指导意义。  相似文献   

19.
针对电控机械自动变速器系统在试验过程中产生换挡冲击、同步器异常磨损等问题展开研究,通过分析具体换挡工作过程及机理,提出了消除换挡冲击的控制方法并实车进行验证。实验结果表明,该方法能有效避免换挡冲击并延长同步器使用寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号