首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
以网联自动驾驶汽车(Connected Autonomous Vehicle, CAV)为研究对象, 研究了CAV车队通过城市信号交叉口的速度轨迹优化控制策略。基于最优控制理论, 采用CAV的自动驾驶模型描述车间相互作用, 以所有CAV车辆在行驶过程中的总油耗为优化目标, 根据信号灯的配时信息建立模型约束, 通过优化CAV头车的速度轨迹, 保证整个CAV车队在绿灯相位下快速通过交叉口并实现油耗最小。为了对该优化控制进行高效求解, 采用离散Pontryagin极小值原理建立最优解的必要条件, 利用基于神经网络训练的弹性反向传播(Resilient backpropagation, RPROP)算法设计了数值求解算法。多个典型场景的仿真结果显示: 整个CAV车队均能在不停车的情形下通过信号交叉口, 避免因在红灯时间窗到达停车线造成的停车、启动等过程, 总油耗量最高可减少69.74%。该控制方法利用网联自动驾驶技术的优势, 显著改善了城市交通通行效率和燃油经济性。   相似文献   

2.
为实现智能网联车辆在高速公路动态行车环境下的轨迹实时规划,提出一种基于状态空间采样的轨迹动态规划方法。首先,以安全性为原则选取主车当前行驶的理想车道。基于Frenet坐标与笛卡尔坐标的转换关系,建立车辆运动横、纵向解耦的独立积分系统。将高速公路常见的行驶状态分为车道保持与定速巡航、变道以及前车跟随3类,预测主车行驶车道并针对3类行驶状态分别设计轨迹终端的目标配置方法。然后,利用多项式函数生成连接初始配置和目标配置的多条待选轨迹。构建考虑轨迹偏离理想车道程度、始末速度变化、规划周期和轨迹舒适性的综合损失函数,结合速度、加速度、曲率检查来评价各条待选轨迹的成本并进行排序。最后,预测车辆的横、纵向运动轨迹并构建一种胶囊形的车辆虚拟安全边界,通过碰撞检测,确定主车的最优轨迹,设置动态规划触发条件及时更新最优轨迹并避免过度规划浪费资源。研究结果表明:提出的算法能满足高速公路场景的动态规划需求;通过对轨迹规划周期、虚拟安全边界、动态规划时间间隔等关键参数的分析与优化,主车的横摆角速度范围稳定在-0.1~0.15 (°)·s-1,横向加速度范围稳定在-0.16~0.32 m·s-2,跟踪参考轨迹的最大误差不超过0.022 m,提出的算法能规划出具有高安全性、稳定性和舒适性的轨迹。  相似文献   

3.
在城市道路交通中,信号交叉口区域内车辆频繁停车启动的现象,加剧了整体交通流的能源消耗、污染排放与车辆延误。为了减少信号交叉口启停波现象对整体交通流产生的负面影响,以面向未来人工驾驶车辆(HDV)/智能网联车辆(CAV)混合构成的新型混合交通环境为基础,提出了一种基于出发时刻预测的生态驾驶方法,通过优化CAV的驾驶轨迹,减少交叉口区域的车辆延误和能源消耗。首先,对混合交通流的基本图模型进行了分析,根据启停波影响范围,划分CAV通过交叉口的驾驶场景;然后,建立了子区渗透率对饱和车头时距的影响关系,预测了CAV以当前饱和车头时距通过交叉口的时间;最后,结合车辆与交叉口的距离,利用分段三角函数模型,生成其通过交叉口的速度限制曲线,并将优化速度嵌入到智能车辆的跟驰模型中作为限制速度,从而使CAV在无法通过当前绿灯窗口的条件下,实现提前减速,在通过交叉口区域后解除速度限制,切换回自身的跟驰模型。此外,还提出了平均综合效能这一指标来综合评价驾驶策略在效率和能耗2个方面的性能,并将提出的基于出发时刻预测的生态驾驶方法与传统网联车辆控制方法、经典交叉口节能控制方法进行了对比。研究结果表明:提出的出发时刻预测方法可以精确预测CAV在交叉口的出发时刻,有效减少车辆的能源消耗与污染排放,同时提高信号交叉口的通行效率;在渗透率大于60%情况下,该方法对系统效能的提高达到12%左右,在10%渗透率条件下也可以达到6%的效能增益;在交通饱和流率在0.5~0.9的范围内时,系统的效能增益较明显。  相似文献   

4.
为了提高信号交叉口自动驾驶车辆左转运动规划的适应性、鲁棒性与类人化程度,提出一种考虑多目标需求的自动驾驶类人化全局运动规划方法。首先,基于西安市北大街信号交叉口规格构建结构化场景,结合车辆运动学模型与道路几何规格定义自动驾驶车辆规范化行驶安全域和车辆运动参数约束条件;其次,根据信号灯状态、道路限速与车辆性能约束制定上游阶段车辆不停车通行规则,以行驶安全、燃油消耗、通行效率与驾驶舒适度作为目标性能函数,构建类人化全局多目标优化模型,通过人类驾驶的车辆预转弯行为耦合上游阶段与转弯阶段;再次,针对非线性运动规划模型变量与约束规模化问题,采用粒子群算法与全联立正交配置有限元方法求解不同阶段车辆运动轨迹的最优解;最后,试验建立Prescan与MATLAB/Simulink联合仿真平台,从多目标性能、适应性以及合理性方面验证该模型的综合性能。结果表明:在以信号灯状态和车辆初速度为变量建立的12种工况下,该模型与人类驾驶车辆、混合运动规划模型相比,平均可分别节省燃油消耗63.7%和29.5%,平均通行延时分别降低3、0.9 s,且轨迹曲率更平缓,最大横向加速度与方向盘转角平方和的平均值最小,证明该模型的多目标性能更好;在以路缘石半径与车道数目为变量建立的7种交叉口规格工况下,所提出模型的车辆轨迹平滑,轨迹安全域边界距离始终大于1.4 m,曲率变化符合期望且峰值小于0.22 m-1,说明该模型具有较好的适应性;在自由/固定终端时刻条件下,该模型规划的车辆空间路径、速度、曲率及航向角的变化与目标权重变化保持一致,验证了模型的合理性。  相似文献   

5.
为了研究如何结合移动检测数据来确定交叉口排队长度,并以此来衡量交通拥堵程度的问题,利用车辆行驶轨迹,分析了通过交叉口车辆的排队特点。根据车辆在队列中的不同排队位置,分车辆通过交叉口时所存在的A,B,C这3种位置,建立了面向延误最小的排队长度估计模型。其中,通过虚拟线圈检测器后开始减速停止在停车线前的A位置车辆排队估计模型基于基本延误模型;减速进入虚拟线圈检测区域停车的B位置车辆排队估计模型基于简化车辆跟驰模型,对可获得车辆行驶轨迹的网联车减速过程进行了重建;减速停止在虚拟线圈检测器前的C位置车辆排队估计模型基于LWR消散模型以及交通流理论算法,并利用网联车车辆行驶轨迹数据进行了加速过程的重建。在此基础上,根据不同位置车辆与队尾网联车的距离不同,对其到达率赋予不同的权重,计算总的排队长度。最后,通过图新地球地图软件投影并筛选车辆在案例交叉口的车辆行驶轨迹,利用微观交通仿真软件VISSIM对本研究的模型进行仿真验证。结果表明,排队长度估计模型与真值的最大误差为12.4%,最小为2.2%,平均误差为8.75%,方差为12.595%~2,绝对与相对误差均保持在可接受范围以内,说明基于车辆行驶轨迹的信号交叉口排队长度估计模型能够较为有效地估计城市道路交叉口的排队长度。  相似文献   

6.
轮式装载机在工作区域行驶时,避障过程频繁,以往的避障轨迹规划未考虑整车转向半径约束和车速变化,也较少考虑整车在动力学模型条件下的轨迹跟踪性能。针对上述情况,以自动驾驶轮式装载机为对象,基于最优快速随机扩展树算法(RRT*),考虑车身膨胀圆个数,生成全局最优避障路径,以整车最小稳定转向半径为约束,利用CC-Steer算法对避障路径进行平滑处理,采用路径-速度分解算法规划满足整车在加速、匀速和减速状态下的避障行驶轨迹。基于整车动力学模型,考虑行驶过程中的横向位置偏差和航向角偏差,并将整车动力传动系统视为1阶惯性环节,构建装载机动力学状态空间方程。以加速度和铰接角为控制输入,以车速、横向位置偏差和航向角偏差为控制输出,建立整车动力学预测模型,以加速度、铰接角和车速为约束条件,将目标函数转换为二次规划问题,建立满足装载机在工作区域避障的模型预测轨迹跟踪控制系统。以规划的非匀速行驶避障轨迹为目标,利用构建的模型预测轨迹跟踪系统,进行自动驾驶轮式装载机的轨迹跟踪仿真。研究结果表明:所提方法能够很好地控制自动驾驶轮式装载机从初始位姿驶向目标位姿,实现整车在工作区域的避障过程,且在避障过程中满足整车的约束要求,保证整车在轨迹跟踪过程中的安全稳定性能。  相似文献   

7.
本文中提出了一种考虑信号交叉口等待时间的车辆最优路径规划算法。通过GPS采集的浮动车数据与电子地图进行匹配,实时计算出各路段的车辆平均行驶速度和通行时间。基于马尔科夫链构建信号交叉口红绿灯的概率模型,通过车路协同技术预先获取各路段交叉口信号灯的位置和相位配时信息,并在车辆接近交叉口时对车辆速度进行优化,将车辆加速通过交叉口视为绿灯时间的延长,并以此构建车辆快速通过交叉口的等待时间模型。在此基础上,结合A*算法,提出一种考虑快速通过信号交叉口的改进A*算法。最后选取长沙市区某路网为算例进行仿真分析,结果表明改进A*算法所得路径的通行时间明显短于传统A*算法。  相似文献   

8.
城市道路交叉口交通隔离栏侵入内侧车道建筑限界,导致车辆横向偏移,增加行车风险。为了解城市平面交叉口交通隔离栏对左转车辆规避行为的影响,通过无人机采集3个设有交通隔离栏的平面交叉口车辆视频,提取车辆轨迹、速度、加速度等参数。分析交叉口出口不同车道车辆偏移和速度的分布特性,研究左转车辆规避特性。结果表明:(1)两侧车道上行驶的车辆更倾向于向中间车道偏移,中间车道行驶轨迹则较为稳定;(2)20 m的行程可供驾驶人稳定行驶方向,保持与交通隔离栏的安全横向距离;(3)左侧车道上85%以上车辆远离交通隔离栏行驶,平均偏移距离为0.278 m;右侧车道上60%左右车辆远离右侧行驶,平均偏移距离为0.116 m。(4)左转车辆在出口不同车道的速度分布存在显著差异,其中左侧车道和右侧车道上左转车辆速度分布峰值、横向加速度均值、纵向加速度均值均小于中间车道。以此提出城市道路交叉口的改善方法:(1)增加中分带宽度,提升路侧净距,实现左侧车道名义路权宽度与实际路权宽度一致;(2)增大硬质设施与驾驶人的横向距离;(3)开口段硬质设施优化为柔性,减弱设施心理冲击,降低驾驶负荷;(4)增设路面导流线和反光设施,保证...  相似文献   

9.
为明确城市干路交叉口汽车右转的轨迹特性和轨迹曲率模式,使用无人机在重庆市4个城市道路交叉口上方进行高空拍摄。利用图像分析方法采集了右转车辆的轨迹数据,包括时间、行驶速度和轨迹坐标等,通过对相邻轨迹点外接圆半径的计算得到轨迹曲率。运用轨迹线-车道边缘线的间距值分析了右转车辆轨迹通过位置分布与交叉口几何布局之间的关系,明确了交叉口右转车辆轨迹的曲率特性。运用聚类方法识别了右转车辆的6种轨迹曲率形态,确定了不同轨迹曲率形态下的常见驾驶行为,并研究了车辆行驶速度与轨迹曲率的相关关系。研究结果表明:①交叉口几何布局(包括路缘半径、车道宽度和出口车道数)对右转轨迹通过位置分布存在影响;②带渠化设计的右转专用道可以限制轨迹分布范围,减少右转交通的冲突和延误;③在右转过程中公交车辆较小型汽车所需侧向空间更大,轨迹分布的离散程度更低;④轨迹曲率的关键点与圆曲线设计中的主要点变化趋势不一致;⑤车辆加速度与轨迹曲率变化率呈负相关关系,相关系数为-0.843 5;⑥行驶速度与等效半径存在正相关关系,车辆行驶速度越快,圆曲线内轨迹的等效半径越大。   相似文献   

10.
针对车路协同环境下的冲突问题,建立了以系统反应时间代替驾驶员反应时间的自动驾驶车辆制动距离模型,以此作为安全距离改进了矩形冲突检测模型,并根据轨迹优化的研究思路,提出了以矩形冲突检测模型为基础的冲突消解算法,对非通行优先权车辆进行速度引导,避免车辆冲突。在车联网开源框架 Veins 的基础上,将交通仿真器 SUMO和网络仿真器 OMNeT++双向耦合,并对冲突检测模型与消解模型进行验证。仿真结果显示,该冲突检测及消解模型具有可行性,与传统无信号交叉口四路停车让行规则相比,模型中的速度引导方案能减少合流冲突车辆 8.6%的平均行驶时间,减少交叉冲突车辆 8.3%的平均行驶时间;合流冲突和交叉冲突中车辆的平均速度分别提高了61.4%和105.0%。在实际应用中,冲突消解模型可以为不同速度范围内的自动驾驶车辆提供速度参考,降低无信号交叉口车辆发生碰撞的概率,提高无信号交叉口的通行效率。  相似文献   

11.
为使电动汽车在行驶中达到最优能耗,以车辆行驶能耗最少为目标,提出了一种考虑交叉口信号灯和能耗的电动车最优路径规划算法。根据电动车运行时能耗和制动能量回收等因素,建立能耗模型。基于车路协同技术预先获取各路段交叉口信号灯的位置和配时信息,以此建立车辆通过信号交叉口的节能驾驶模型。基于信号灯的转换概率和电动车的能耗模型,将通过信号交叉口的交通流近似分为4个阶段:绿灯匀速通行、红灯前匀加速、红灯匀减速和红灯停车等待。结合红绿灯的转换概率和4个阶段的通行能耗,最后提出一种改进的A~*算法,来寻找可行的能耗最小的路径,并进行了算例验证。结果表明,提出的方法可找到起点到终点的能耗最优路径,节能约达13%。  相似文献   

12.
王伊欣  张希  刘冶 《公路》2022,67(3):225-231
为了探究城市路网中混有智能网联车辆(CAV)的交通流特性,研究CAV不同渗透率分布下对路网通行能力的影响。应用智能驾驶模型(IDM)和协同自适应巡航控制模型(CACC)分别作为人工驾驶车辆(HDV)和智能网联车辆的纵向速度更新规则,并建立考虑车辆到信号交叉口距离影响的横向换道规则。推导基于各渗透率等级路段占路网长度比例下的混合交通宏观基本图模型(MFD),通过SUMO仿真验证模型有效性。最后针对模型中的比例参数进行敏感性分析。结果表明:混合交通MFD可以用于异质交通流组成的城市路网宏观交通状态的有效估计与通行能力分析。当CAV渗透率均匀时,在路段渗透率高于30%时,路网通行能力提升显著;当CAV渗透率非均匀时,异质路网的通行能力随着渗透率等级较高路段比例的增加而逐渐提高,100%CAV路段比例的影响尤为显著。混合交通MFD为混有CAV的城市交通调控和CAV在路网中的路径规划提供理论参考。  相似文献   

13.
基于浮动车停车点数据交叉口车辆排队长度计算方法   总被引:1,自引:0,他引:1  
浮动车数据中存在许多行驶速度为零的停车点数据记录,它们和交叉口车辆排队长度存在一定的空间关系.针对此提出一种新的基于浮动车停车点数据计算交叉口前车辆排队长度的方法.首先根据车辆停车点地理位置和正常行驶点的连续关系及和路段的相对位置进行地图匹配,提取出路段上交叉口前正常排队停车点数据;然后从正常排队停车点数据中计算出相对交叉口的浮动车数据相对位置关系,根据对浮动车停止点距离交叉口的位置密度分布变化进行2次统计计算,推算出交叉口前车辆排队长度.最后通过实际浮动车数据计算实例对本方法进行了说明和验证.  相似文献   

14.
随着智能网联汽车技术的快速发展,跟车行驶控制能够有效实现车辆智能跟随及快速高效队列行驶。针对城市郊区道路条件下的智能网联汽车速度规划问题,以提高车辆的燃油经济性、舒适性及安全性为目的,基于跟车速度限幅和车辆动力系统信息,设计了基于初值优化的序列二次规划算法(Sequential Quadratic Programming, SQP),实时求解获取车辆跟车过程中的最优速度轨迹。首先,在车联网环境下,基于车车(Vehicle to Vehicle, V2V)通信及车辆与交通设施(Vehicle to Infrastructure, V2I)通信技术实时获取前方车辆的速度、加速度及位置等行驶信息并实时采集道路交通信息;然后,为减少车辆动态能耗损失和减小所需牵引力,并在规定的时间段内完成相应的行驶路程,利用采集到的前车行驶信息,采用基于初值优化的SQP算法对最优目标车速进行求解;此外,基于周边动态的道路交通场景,考虑边界约束条件,采用滚动时域的方法实现目标车辆速度在每个采样时刻的在线滚动优化,保证目标车辆节能安全地跟车行驶;最后,通过仿真验证了该算法的有效性和实时性。研究结果表明:基于初值优化...  相似文献   

15.
交叉口是城市道路交通运行的瓶颈点,是造成交通拥堵的问题所在。交通控制是调控交通流、预防和缓解交通拥堵的关键策略,在效费比上具有较大优势。智能网联、自动驾驶技术的发展催生了常规车辆(Regular Vehicle, RV)、网联车辆(Connected Vehicle, CV)和智能网联车辆(Connected and Automated Vehicle, CAV)组成的智能网联新型混合交通流,推动着城市道路交通控制对象、数据环境和控制手段的变革,为交通控制提出巨大挑战的同时,也为交通控制理论方法的创新发展创造了新的条件。智能网联混合交通流交叉口控制已成为国内外研究热点,尚处于研究起步阶段。根据路权特征,先从单点交叉口、干线交叉口和路网多交叉口3个层面梳理智能网联混合交通流环境下的共用设施交叉口控制研究,包括交通信号配时、车辆轨迹/路径规划以及车辆轨迹-信号配时协同控制。然后介绍自动驾驶专用设施交叉口控制研究,包括CAV专用车道、CAV专用路段、CAV专用区域和快速公交-CAV混合专用车道。通过对现有成果的梳理发现:虽然新型混合交通流交叉口控制研究取得了部分进展,但RV驾驶行为的随机性、...  相似文献   

16.
为了研究道路平面交叉口车道展宽渐变段的长度,本文建立了满足交叉口车道渐变段车辆行驶特征的正弦函数与双曲正切函数加权换道模型,并对模型中的最大横向加速度等关键参数进行深入研究。根据平面交叉口的设计速度和超高计算得到了渐变段长度的推荐值,最后采用Truck Sim汽车动力学仿真软件对结果进行验证。仿真结果表明基于正弦函数与双曲正切函数加权换道模型提出的交叉口车道渐变段长度推荐值可以保证车辆沿特定最优的轨迹安全行驶,对日后平面交叉口的设计具有一定的参考意义。  相似文献   

17.
基于交叉口相位切换期间的车辆轨迹数据,分别根据单车和跟车行驶状态,识别和分析了相位切换期间可能发生的危险驾驶行为。通过视频拍摄和图像处理的方式,提取了曹安公路沿线3个交叉口共312条单车状态和四平路-大连路交叉口共449条跟车状态的高精度车辆轨迹数据。针对交叉口相位切换期间的危险驾驶行为特征,利用速度、加减速度、减速度变化率、潜在碰撞时间(TTC)等指标,研究在此期间车辆发生危险驾驶行为的特点和类型。对于单车状态下行驶的车辆,按停止、通过分类,依据减速度、减速度变化率、减速度变化率的峰值差等指标将停止车辆的危险驾驶行为分为紧急减速型、增强减速型和持续急减型,依据过停车线时间、速度、加速度等指标将通过车辆分为闯红灯型、超速过线型、激进加速型和持续高速型。对于在跟车状态下行驶的车辆,按前、后车不同的停止、通过决策组合分类,依据连续5个时间间隔(0.12 s)的TTC分析前、后车的危险驾驶行为及发生追尾事故的危险程度。针对识别出的危险驾驶行为类型,讨论车辆的关键行为参数与危险驾驶行为之间的内在关联。研究结果表明:单车状态下有17%的车辆存在危险驾驶行为,其中53%为紧急减速行为;跟车状态下有19%的跟车行为是危险的,其中停止车辆的比例是通过车辆的2倍以上。研究成果可进一步应用于驾驶行为模型的参数标定、基于车辆轨迹的交叉口安全评价以及预防危险驾驶行为的主动安全控制策略等。  相似文献   

18.
快速搜索随机树(rapidly-exploring random tree, RRT)算法是智能汽车路径规划的常用方法,但传统RRT和RRT~*算法存在路径抖动大、易陷入局部区域和计算效率低等缺点。针对这些问题,本文中结合实车数据提出了一种基于安全场改进RRT~*算法的智能汽车路径规划方法。首先,建立了基于安全距离模型的安全场,通过驾驶数据采集试验对模型关键参数进行了提取;在此基础上,提出了具备安全场引导和角度约束等策略的改进RRT~*算法;最后,通过仿真对算法进行了验证。结果表明,本文提出的路径规划方法能计算出满足车辆轨迹曲率约束的有效路径,同时具有较快的搜索速度和更高的成功率。  相似文献   

19.
文章基于动态规划算法对电动节能车的速度曲线的优化问题展开了研究。在纯电动汽车的能耗优化问题中,动态规划可以用于求解最优的能耗分配方案,以达到最小化总能耗的目标,从而达到最优的一个速度曲线。基于动态规划的优化方法,根据能源动力系统效率模型提出了一种基于全局最优算法动态规划的优化速度曲线的目标优化的控制策略,并给出目标路段的最优车速,以达到一个最佳的行驶速度,可以提高电动节能车的行驶效率和节能效果,与传统的线性或非线性速度曲线设计相比,具有较好的性能和更高的实用性。文章的研究为电动节能车的设计提供了一种新的思路和方法,对于推动新能源汽车的发展和应用具有重要意义。  相似文献   

20.
现有的安全距离模型是基于纵向相对车速或减速度值建立的,没有考虑移动目标的横向运动特性。本文利用移动目标横穿马路的速度、相对位置,建立横向安全距离模型,并提出一种基于横向安全距离模型的主动避障算法。首先,根据横向移动目标横穿马路的速度、相对位置和自车的制动距离建立横向安全距离模型,设计主动避障算法。接着,为计及路面条件对制动效果的影响,引入当前行驶路面估算的附着系数峰值估算最大制动减速度,约束目标避障减速度,并调整制动强度,以适应不同路况的安全避障行驶。最后,以典型横向移动目标骑行者作为研究对象,通过PreScan/Simulink/CarSim联合仿真验证避障算法的有效性。结果表明:基于横向安全距离模型的主动避障算法能有效避免与骑行者碰撞,提高行车的主动安全性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号