首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   6篇
公路运输   9篇
综合类   5篇
  2024年   2篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2014年   1篇
排序方式: 共有14条查询结果,搜索用时 78 毫秒
1.
为明晰无信号交叉口网联车辆协同碰撞预警研究的局限性及发展方向,系统梳理了协作式交叉口碰撞预警(CICW)的研究进展。首先,分类梳理了现有交叉口行车冲突检测方法的优势与不足;其次,总结了不同预警级别、机制和模式的适用性;再次,归纳了CICW有效性及安全性评价指标,对比了仿真、实车以及虚实融合测试的技术特征;然后,分析了驾驶人不确定性与通信不可靠对CICW的影响及优化思路;最后,对CICW的发展方向进行了展望。结果表明:行车风险场模型是解决现有CICW冲突检测方法中综合交通风险、冲突严重程度表征问题的可行方案,但仍需进一步研究适当的环境参数、风险指标及阈值的设定;CICW应用场景下的驾驶人驾驶特征的建模、预测和在线识别,以及CICW预警模式的自适应构建是设计可靠有效CICW应用的可行解决思路;实现对CICW的全方面客观评估,有赖于研究搭建综合评价机制及大规模试验平台;车联网通信不可靠严重影响CICW的有效性,需要进一步研究信道拥塞控制机制与基于通信故障/失效预测的CICW容错机制。  相似文献   
2.
分析了道路线形对智能汽车行驶安全性的影响,分别使用数据驱动的机器学习方法和模型驱动的经典数学建模方法,建立了以道路线形技术指标为输入的神经网络模型和多元数学模型,预测事故多发路段;计算了各个道路线形技术指标与事故率之间的偏相关系数,从中挑选出与事故率相关程度较大的道路线形特征,使用T检验和F检验验证了道路线形特征组合和单个特征对事故率的影响。结果表明:基于机器学习的神经网络模型和基于数值逼近理论的多元数学模型预测正确率基本相近,大约为90%;2种模型对道路安全影响较大的道路线形相关不利因素组合相同,均为平曲线转角、横向力系数和纵坡坡度;各种不利因素组合中,平曲线转角、横向力系数和纵坡坡度出现的频率分别为100.0%、91.7%和83.3%,远远大于其他因素;事故多发路段道路线形因素不仅与平曲线转角、横向力系数和纵坡坡度有关,而且与其线形组合有密切关系,组合不当亦会导致事故增加;2种模型可相互验证,考虑计算速度及参数的可解释性,实际中应优先选择多元数学模型进行事故预判。  相似文献   
3.
将自动驾驶汽车(autonomous vehicle,AV)与分时租赁、点对点(peer-to-peer,P2P)租赁模式相结合,为出行者提供新型的出行方式. 为探究出行者租赁自动驾驶汽车的行为特征,分析出行者对AV分时租赁、AV P2P租赁、私家车、公共交通的选择意愿及其影响因素. 基于出行方式选择意愿的调查数据,将结构方程模型(structural equation model,SEM)与多项Logit (multinomial Logit,MNL)模型相结合,建立同时标定显变量与潜变量参数的结构方程-多项Logit (structural equation-multinomial Logit,SE-MNL)模型,对比分析了MNL与SE-MNL模型的参数标定结果. 研究结果表明:在95%的置信水平下,显变量中的出行费用、车内时间、驾照情况、出行目的、婚姻状况以及潜变量中的便捷性、安全性、乘车体验、舒适性对出行者选择AV分时租赁或P2P租赁的影响都是显著的;SE-MNL模型的拟合度较MNL模型高出2%~3%.   相似文献   
4.
为提高交通参数提取的准确性与实时性,研究了基于多尺度边缘融合和SURF特征匹配的车辆检测与跟踪方法,克服了传统基于边缘特征的车辆检测方法易受噪声、背景干扰的问题,实现车辆准确检测.将车辆检测结果作为跟踪样本建立跟踪样本集合,通过建立匹配点对几何约束消除误匹配特征对,提高跟踪样本与待跟踪视频帧的SURF特征匹配准确度.针对车辆驶入、驶离相机视野,车辆间歇性运动,背景缓慢变化等情况提出跟踪样本更新机制,实现车辆的准确、实时跟踪.实验结果显示,所提算法的车辆检测率为88.3%,检测准确度为90.2%;跟踪精确度为86.4%,跟踪准确度为92.7%;检测时间成本为91.8ms,跟踪速率为52.2fps.检测准确度、跟踪准确度、检测速率、跟踪速率均高于光流法、粒子滤波法和SIFT特征匹配法,表明所提算法能较好地满足实时性应用.   相似文献   
5.
研究了制动力曲线异常检测方法, 分析了回踩异常特性, 考虑了制动力检测工况和制动力曲线变化趋势, 基于余弦相似度与相对误差, 对制动力数据进行聚类, 建立了制动力曲线分段算法; 将制动力曲线分为阻滞段、上升段、持续段和释放段, 提取出相应的数据子集; 对3家检验机构的9 120条制动力曲线进行人工筛选和分析, 归纳了制动超前、回踩、增长滞后3种异常特征, 给出了相应异常检测算法; 对于较难识别的回踩异常, 根据动态规划思想, 找出上升段最长连续趋势下降子序列, 计算了该子序列占制动力曲线上升段的行程比, 并结合经验值来判定该子序列是否异常。研究结果表明: 对于维度不大于32的低维制动力数据, 通过余弦相似度可聚类制动力曲线的阻滞段、上升段、持续段和释放段; 对于维度大于32的高维数据, 因为维数较高, 行程比较小, 分界点对整个序列相似度影响较小, 在这种情况下, 必须在考虑相似度的情况下, 通过分界点的相对误差进一步约束聚类结果, 可以确定制动力曲线的阻滞段、上升段、持续段和释放段; 由于采集的回踩子序列占制动力曲线的行程比为9.8%, 大于行程比的经验阈值8.2%, 因此, 该制动力曲线具有回踩异常, 判断结果正确, 方法可靠。   相似文献   
6.
分析了现有交通信息服务系统存在的感知能力有限、服务方式单一和动态信息更新不及时的问题,围绕当前交通工程和信息技术领域的研究发展趋势,提出了一种泛在交通信息服务系统(U-TISS)的架构,将先进的协同感知、泛在网络、云计算、大数据等技术综合运用于交通信息服务领域,实现交通信息服务系统与交通物理系统的深度融合。U-TISS 架构包括感知、网络、计算和服务4层次。感知层主要通过传感器、射频标签、识读器、摄像头、全球定位系统、车载智能终端设备等,实现对人、车、路、环境的全面感知;网络层是以ZigBee、蓝牙、DSRC 等短程通信为主的末梢节点通信与以3G/4G或有线通信链路为主的承载网络通信,通过车路短程通信和自组织网络、路侧与感知中心的承载网络实时采集和传输各种交通信息,构建交通要素信息的精准获取与发布体系;计算层利用云计算技术实现有效的交通富信息挖掘与提取,提升交通信息服务质量;服务层构建基于泛在网络和云计算的交通信息服务平台,通过移动智能终端、车载终端、资讯广播、可变信号板等信息发布方式,为交通参与者提供实时动态的交通信息服务和丰富全面的辅助决策支持,实现交通信息服务的智能化与个性化。基于U-TISS架构,分析了实现U-TISS的关键技术,包括智能终端的普适感知与交互、车辆精确定姿与定位、交通信息路侧协同感知、车车/车路短程通信与组网、车载移动互联、交通信息云管理、交通大数据分析与挖掘、信息安全与隐私保护。分析结果表明:U-TISS具有泛在感知、开放互联、实时传输、深度挖掘与优质服务的特点,能够从安全性、高效性、便捷性和环保性4方面改进与提升现有交通信息服务系统的服务水平。在安全性方面,基于DSRC的车车/车路通信与组网技术使驾驶人可以获取超越视距、超车载感知能力范围与多时空尺度的交通信息,增强车车/车路间的协同能力;在高效性方面,借助泛在感知的海量路网运行信息和云计算平台提供的大数据分析技术,通过精细化的管理实现交通系统的高效运行;在便捷性方面,通过智能终端能够为公众出行路线、方式和出发时间的个性化定制提供支持;在环保性方面,通过对车辆控制系统提供更多的行车环境信息实现车辆控制的优化,通过大数据或社交网络提高驾驶人对环保驾驶的认知,实现绿色出行。U-TISS 关键技术的深入研究、推广与应用,及相关行业标准与规范的出台,将引起交通信息服务类应用商业模式的创新与变革,最终实现协作式智慧交通。  相似文献   
7.
为了跟踪近年来智能网联汽车(CAV)协同生态驾驶策略的研究进展, 分析了车辆、驾驶行为、交通网络和社会这4类因素对CAV能耗的影响程度, 以车辆、基础设施和旅行者为对象对目前CAV生态研究进行分类, 重点分析了信号交叉口生态驶入与离开、生态协同自适应巡航控制、匝道合流区生态协同驾驶、生态协同换道轨迹规划和生态路由5种典型车辆协同生态驾驶应用场景的研究现状。分析结果表明: 相比人类驾驶方式, 在任何交通流量CAV 100%渗透率的条件下和低交通流量CAV部分渗透率的条件下, CAV油耗节省效果显著, 最高可达63%, 而具有部分智能化和网联化等级的CAV油耗可至少节省7%;现有研究较少考虑人机共驾情况下, 驾驶人反应延迟和自动控制器传输延迟导致的轨迹跟踪偏离; 现有研究将车车通信/车路通信假定为理想数据交互过程, 未考虑通信拓扑、传输时延、通信失效与基站切换等因素对CAV生态协同驾驶策略的影响; 现有研究较少探讨多车道、交叉口转向-直行共用车道和U型车道等交通场景, 以及不同智能网联等级CAV与人类驾驶汽车、行人、自行车等共存的混合交通条件下的生态驾驶策略; 受限于自动驾驶技术和基础设施尚未成熟和完善, 真实交通场景下的测试验证工作尚未开展; 车辆控制、车车通信、多车协同、混合交通流场景、半实物仿真测试和真实交通场景测试等方面将是CAV协同生态驾驶策略的进一步发展方向。   相似文献   
8.
为缓解信号交叉口区域交通拥堵与污染物排放问题,建立了考虑能效均衡的信号交叉口车辆上下游协同轨迹优化模型。根据信号灯相位配时建立上游区域车辆通行预判模型,基于能源消耗与通行效率建立车辆上下游协同轨迹优化策略,采用带精英策略的非支配排序遗传算法求解多目标优化模型的最优速度曲线,并与无引导方法、三角函数优化法进行了对比试验,结果表明,采用所提出的多目标优化引导算法最大可减少交叉口上下游区域的燃油消耗量21.05%,缩短行程时间13.85%,具有更好的适应性和鲁棒性。  相似文献   
9.
为了提高信号交叉口自动驾驶车辆左转运动规划的适应性、鲁棒性与类人化程度,提出一种考虑多目标需求的自动驾驶类人化全局运动规划方法。首先,基于西安市北大街信号交叉口规格构建结构化场景,结合车辆运动学模型与道路几何规格定义自动驾驶车辆规范化行驶安全域和车辆运动参数约束条件;其次,根据信号灯状态、道路限速与车辆性能约束制定上游阶段车辆不停车通行规则,以行驶安全、燃油消耗、通行效率与驾驶舒适度作为目标性能函数,构建类人化全局多目标优化模型,通过人类驾驶的车辆预转弯行为耦合上游阶段与转弯阶段;再次,针对非线性运动规划模型变量与约束规模化问题,采用粒子群算法与全联立正交配置有限元方法求解不同阶段车辆运动轨迹的最优解;最后,试验建立Prescan与MATLAB/Simulink联合仿真平台,从多目标性能、适应性以及合理性方面验证该模型的综合性能。结果表明:在以信号灯状态和车辆初速度为变量建立的12种工况下,该模型与人类驾驶车辆、混合运动规划模型相比,平均可分别节省燃油消耗63.7%和29.5%,平均通行延时分别降低3、0.9 s,且轨迹曲率更平缓,最大横向加速度与方向盘转角平方和的平均值最小,证明该模型的多目标性能更好;在以路缘石半径与车道数目为变量建立的7种交叉口规格工况下,所提出模型的车辆轨迹平滑,轨迹安全域边界距离始终大于1.4 m,曲率变化符合期望且峰值小于0.22 m-1,说明该模型具有较好的适应性;在自由/固定终端时刻条件下,该模型规划的车辆空间路径、速度、曲率及航向角的变化与目标权重变化保持一致,验证了模型的合理性。  相似文献   
10.
为提高车辆自动紧急制动(AEB)系统的避撞性能,提出了一种考虑前车制动意图的AEB策略及其测试评价方法。通过搭建“PreScan+Simulink+驾驶模拟器”联合仿真平台采集驾驶人制动数据,基于K-均值(K-Means)聚类方法对制动意图进行分类,采用滑动时间窗口提取了意图识别模型训练数据集;通过双层隐马尔可夫模型识别前车制动意图,主车根据不同制动意图计算临界安全距离阈值并制定避撞控制策略;建立PreScan+Simulink虚拟仿真测试环境,提出了基于层次分析法的AEB策略综合评价方法,通过与4种典型AEB控制模型进行对比,验证了所提出方法在不同制动程度场景下均可及时触发制动以避免碰撞,同时可减少过早制动造成的驾驶不适感。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号