首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A calculation model to simulate nonsymmetric ship collisions, implying an arbitrary impact location and collision angle, is described in the paper. The model that is introduced is based on the time integration of twelve equations of motion, six for each ship. The motions of the ships are linked together by a mutual contact force. The contact force is evaluated as an integral over the surface tractions at the contact interface. The calculation model provides full time histories of the ship motions and the acting forces. Physical understanding of the underlying phenomena was obtained by a series of model-scale experiments in which a striking ship collided with an initially motionless struck ship. In this paper, numerical simulations of four nonsymmetric collisions are presented and the calculations are validated with the results of the experiments.  相似文献   

2.
During ship collisions part of the kinetic energy of the involved vessels immediately prior to contact is absorbed as energy dissipated by crushing of the hull structures, by friction and by elastic energy. The purpose of this report is to present an estimate of the elastic energy that can be stored in elastic hull vibrations during a ship collision.When a ship side is strengthened in order to improve the crashworthiness it has been argued in the scientific literature that a non-trivial part of the energy released for structural deformation during the collision can be absorbed as elastic energy in global ship hull vibrations, such that with strong ship sides less energy has to be spent in crushing of the striking ship bow and/or the struck ship side.In normal ship–ship collision analyses both the striking and struck ship are usually considered as rigid bodies where structural crushing is confined to the impact location and where local and global bending vibration modes are neglected. That is, the structural deformation problem is considered quasi-static. In this paper a simple uniform free–free beam model is presented for estimating the energy transported into the global bending vibrations of the struck ship hull during ship–ship collisions. The striking ship is still considered as a rigid body. The local interaction between the two ships is modeled by a linear load–deflection relation.The analysis results for a simplified model of a struck coaster and of a large tanker show that the elastic energy absorbed by the struck ship normally is small and varies from 1 to 6% of the energy released for crushing. The energy stored as elastic global hull girder vibrations depends on the ship mass, the local stiffness of the side structure, and of the position of contact. The results also show that in case of highly strengthened ship sides the maximum global bending strains during collisions can lead to hull failure.  相似文献   

3.
The paper outlines a rational design procedure for bridge piers and pylons against ship collision impacts. Firstly, a set of risk acceptance criteria are proposed. This is followed by a mathematically based procedure for calculation of the probability of critical ship meeting situations near the bridge, and the probability of ship collision accidents caused by human errors as well as technical errors. This first part of the paper leads to identification of the largest striking ship, “design vessels”, a given bridge pier must withstand without structural failure in order for the bridge connection to fulfil the risk acceptance criteria. The final part of the paper is devoted to an analysis of the needed impact capacity for the bridge pylons and piers exposed to ship bow impact loads from these “design vessels”. For a number of different ship types and different tonnage merchant vessels, load – displacement relations for ship bow collisions against rigid walls are derived. Based on these comprehensive numerical results, a new empirical relation is derived which is suited for design against bow collisions. This expression for maximum bow collision forces is compared with a previously published expression for ice-strengthened ships and with existing standards for assessment of bow crushing forces. It is shown that there is need for an update of these existing standards. For design of piers and pylons against local impact pressure loads, a pressure - area relation for bulbous bow impacts is derived.  相似文献   

4.
This paper provides a new contribution to the simplified analytical treatment of collisions between two ships. It is directly connected to the well-known super-elements method, which is a simplified procedure allowing for a quick estimation of the damages caused to both the striking and struck vessels during such events. In this article, a new analytical formulation is presented for estimating the impact resistance provided by inclined ship side panels. Two different scenarios are treated. We first deal with the case of an impact between the oblique plate and the stem of the striking ship, and then we consider the situation where the inclined panel is impacted by the bulb. For these two scenarios, an analytical formulation relating the force and the penetration is provided and these developments are validated by comparing them to the results of finite elements simulations. Finally, the new inclined plate super-element is integrated in a simplified model of a frigate collided by another ship, and the resistance given by the super-elements method is then compared to the one obtained by a numerical simulation of this collision.  相似文献   

5.
This paper presents a procedure to analyse ship collisions using a simplified analytical method by taking into account the interaction between the deformation on the striking and the struck ships. Numerical simulations using the finite element software LS-DYNA are conducted to produce virtual experimental data for several ship collision scenarios. The numerical results are used to validate the method. The contributions to the total resistance from all structural components of the collided ships are analysed in the numerical simulation and the simplified method. Three types of collisions were identified based on the relative resistance of one ship to the other. They are denoted Collision Types 1 and 2, in which a relatively rigid ship collides with a deformable ship, and Collision Type 3, in which two deformable ships are involved. For Collision Types 1 and 2, estimates of the energy absorbed by the damaged ships differ by less than 8% compared to the numerical results. For Collision Type 3, the results differ by approximately 13%. The simplified method is applicable for right angle ship collision scenario, and it can be used as an alternative tool because it quickly generates acceptable results.  相似文献   

6.
目前船舶碰撞研究普遍采用忽略水对船体影响的附连水质量法,本文将水介质对船舶的影响考虑进去,建立船—水—船相互作用的流固耦合算法。并以600吨级巡逻船为研究对象,建立撞击船与被撞船整船模型以及适当大小的水域,解决了撞击船—流场—被撞船之间的耦合问题。在数值仿真计算过程中,将内部动力学及外部动力学同步分析,获得了不同工况下被撞船的运动状态以及损伤变形、碰撞速度和碰撞力等动态结构响应。所获结果可为巡逻船在不可避免地发生碰撞时提供操船建议,对于提高巡逻船的战斗力具有重要的意义。  相似文献   

7.
目前国际上船舶碰撞外部动力学的解析法研究均局限于船体碰撞运动的二维假设,忽略了可能存在的大幅横摇。依据文献[1]给出的二维船舶碰撞数学模型,建立了包括横移、纵移、首摇和横摇在内的三维船舶碰撞数学模型,并编制程序对文献[2]中的算例进行计算,计算结果表明船舶横摇运动在大多数船舶碰撞情况下是不可忽略的。  相似文献   

8.
A new formulation is proposed for the analysis of the impact mechanics of ship collisions that can be applied to both 2D and 3D cases. It is assumed that the impact force is large, and all other forces except the impact forces are neglected. The equations of motion are solved in a local coordinate system, and a transformation matrix between the global and the local coordinate system is proposed. The mass and inertia properties are formulated in the local coordinate system. The orientation of the local coordinate system is determined by the hull shape of the struck ship at the contact point. A closed form solution of the external mechanics of ship collisions is derived. Excellent agreement with an alternative 2D formulation for ship–ship collisions is achieved. The features of the proposed 3D method are demonstrated by numerical examples. An application of the method to estimate the required energy dissipation in ship–iceberg collisions is included. Results and discussions are presented and finally, conclusions are made.  相似文献   

9.
船舶复杂轴系扭转振动建模及动力学分析   总被引:1,自引:0,他引:1  
针对船舶复杂轴系结构,提出一种基于能量法的轴系扭转振动建模及动力学分析方法。该方法对船舶复杂轴系中的典型结构进行统一能量化描述,如联轴器、齿轮、负载等,并结合弹性轴的能量函数构建轴系结构的拉格朗日能量泛函;然后,利用最小二乘法和广义变分法,对轴系角位移展开项系数进行求解,从而建立适用于船舶复杂轴系结构的扭转动力学模型。通过与有限元方法计算结果相比较来验证该建模方法的准确性,并利用该方法分析连接刚度和负载转动惯量对整体轴系扭振特性的影响,以期为船舶复杂轴系设计提供一定参考。  相似文献   

10.
Ship collision accidents are rare events but pose huge threat to human lives, assets, and the environment. Many researchers have sought for effective models that compute ship stochastic response during collisions by considering the variability of ship collision scenario parameters. However, the existing models were limited by the capability of the collision computational models and did not completely capture collision scenario, and material and geometric uncertainties. In this paper, a novel framework to performance characterisation of ships in collision involving a variety of striking ships is developed, by characterising the structural consequences with efficient response models. A double-hull oil carrier is chosen as the struck ship to demonstrate the applicability of the proposed framework. Response surface techniques are employed to generate the most probable input design sets which are used to sample an automated finite element tool to compute the chosen structural consequences. The resulting predictor-response relationships are fitted with suitable surrogate models to probabilistically characterise the struck ship damage under collisions. As demonstrated in this paper, such models are extremely useful to reduce the computational complexity in obtaining probabilistic design measures for ship structures. The proposed probabilistic approach is also combined with available collision frequency models from literature to demonstrate the risk tolerance computations.  相似文献   

11.
Ship collision accidents are rare events but pose huge threat to human lives, assets, and the environment. Many researchers have sought for effective models that compute ship stochastic response during collisions by considering the variability of ship collision scenario parameters. However, the existing models were limited by the capability of the collision computational models and did not completely capture collision scenario, and material and geometric uncertainties. In this paper, a novel framework to performance characterisation of ships in collision involving a variety of striking ships is developed, by characterising the structural consequences with efficient response models. A double-hull oil carrier is chosen as the struck ship to demonstrate the applicability of the proposed framework. Response surface techniques are employed to generate the most probable input design sets which are used to sample an automated finite element tool to compute the chosen structural consequences. The resulting predictor-response relationships are fitted with suitable surrogate models to probabilistically characterise the struck ship damage under collisions. As demonstrated in this paper, such models are extremely useful to reduce the computational complexity in obtaining probabilistic design measures for ship structures. The proposed probabilistic approach is also combined with available collision frequency models from literature to demonstrate the risk tolerance computations.  相似文献   

12.
Ship collisions with offshore structures may be characterized by large amounts of kinetic energy that can be dissipated as strain energy in either the ship, or the installation, or shared by both. In this paper a series of FE numerical simulations are performed with the aim of providing a clearer understanding on the strain energy dissipation phenomenon, particularly upon the ship-structure interaction. Ships of different dimensions and layouts are modelled for impact simulations. Likewise, three platform jacket models of different sizes and configurations are considered. The collision cases involve joints, legs, and braces and are simulated for several kinetic energy amounts of the vessels and different impact orientations. An overview of the plastic deformation mechanisms that can occur in both ship and jacket structure is also given. The results from the various models with different collision scenarios are compared in terms of the strain energy dissipation with respect to the different ship/installation strength ratios. From the FEA simplified approaches are also derived in terms of the relative stiffness of the two structures for assessing the responses and energy absorptions of the two structures. The conclusions drawn from this study can be applied to a broader range of collision assessment of offshore steel jacket platforms subjected to high-energy ship impacts.  相似文献   

13.
By taking advantage of the user-defined load subroutine (loadud) and the user common subroutine (usercomm) in LS-DYNA, the authors proposed a new coupled approach for simultaneously calculating structural damage and the planar 3DOF ship motions in ship collisions. The coupled procedure aimed at predicting the detailed structural damage together with reasonable global ship motions. This paper extends the method to consider the full 6DOF ship motions; thus, ship collision as well as grounding accidents can be properly handled. This method is particularly useful for design purposes because the detailed ship hull profile is not needed.A traditional ship maneuvering model is used for the in-plane surge, sway and yaw degrees of freedom with a series of nondimensional coefficients determined from experiments. It is assumed that the out-of-plane degrees of freedom are not coupled with the in-plane ship motions, and there is no coupling among roll, pitch and heave motions. The implementation is verified through free decay tests, and the obtained natural periods show good agreement with theoretical results.Several collision and grounding cases are simulated in which a supply vessel crashes into rigid plates with different orientations. The effects of the roll motion, the heave and pitch motions and the full 6DOF motions are studied. The results are compared with those from a 6DOF decoupled method. Ship motions through the proposed method compare reasonably well with SIMO results. It is found that several consecutive impacts may occur in the simulation of one collision case due to the periodic motions. This is not taken into account in the decoupled method, which makes this method unconservative.  相似文献   

14.
本文介绍了一种结合地效翼船特点的船型实用设计方法,该方法能够将船体外形用一组简单的数学公式完整地表示出来.采用该方法编制了地效翼船型线设计计算程序,并先后对数条地效翼船船型进行了优化设计,都取得了良好的效果.  相似文献   

15.
This paper presents an efficient finite element procedure for the collapse analysis of ship hulls under complicated loads. A set of finite elements, such as beam-column elements, stiffened plate elements, and shear panel elements are developed, directly accounting for the geometrical and material non-linearities and initial imperfections.

Elastic-plastic stiffness matrices for elements have been derived by combining elastic large displacement analysis theories with a plastic hinge model. The buckling and post-buckling behaviour of plates is included using an effective width concept. The procedure is effective, since few mode-points are necessary and numerical integration for evaluating stiffness matrices is avoided. Fracture mechanics criteria are introduced in order to account for tension tearing rupture and brittle failure of the material.

Practical applications to ultimate longitudinal strength analysis of ship hulls and tanker collision analysis are presented. The procedure can also be used for collapse analysis of offshore and onshore structures.  相似文献   


16.
陆冬青  黄志清  邱云明 《船舶工程》2015,37(S1):206-208
建立船舶操纵运动数学模型,计算确定相邻的岸线线段和船舶轮廓线线段之间的凹凸关系,提出船舶操纵运动仿真中船舶碰岸检测算法,并对检测到的碰岸情况进行时间步长调整。编制了计算程序,对于船舶轮廓线端点位于岸线内侧和岸线端点位于船舶内部两种船舶碰岸情况进行了碰岸检测仿真试验,试验结果良好,很好地避免了在船舶操纵运动仿真中出现船舶冲上码头或者岸滩的现象。  相似文献   

17.
Fatigue is a common failure mode in ship structures. For structures with an initial crack, the fatigue crack propagation behavior needs to be considered. The purpose of this study is to establish a procedure for analysis of fatigue crack propagation of ship structures in combination with reliability methods. The stress intensity factor (SIF) and geometry correction factor are calculated by means of finite element analysis. Validation for the SIF calculation is achieved by comparing the computed results with those based on related solutions. Since fatigue damage usually occurs in weld areas, the effect of such components on the fatigue crack propagation behavior was also considered in this work. The Paris law in combination with the Monte Carlo technique are employed for the fatigue crack propagation analysis in this study. Reliability updating based on inspection for cracks is also carried out. A computer program was developed for the purpose of fatigue crack propagation analysis within the framework of reliability methods. An application example of fatigue crack propagation in relation to the hull of the icebreaker Xuelong 2 is presented. The sensitivity of the procedure to key analysis parameters (sample size, initial crack size) is also considered. Finally, the effect of low temperatures on the computed results is also analyzed.  相似文献   

18.
This study was initiated due to the lack of experimental data on ship collisions. The feasibility of model-scale ship collision experiments was examined and a series of model-scale ship collision experiments is presented. The theoretical background for the analysis of experiments is given together with the principles of scaling. Proper scaling should assure physical similarity to the large-scale experiments conducted in the Netherlands. The Froude scaling law was followed, resulting in the improper scaling of some forces: the effects of this are discussed. The study concentrates on the dynamics of collisions. The structural response, properly scaled from the large-scale experiments, was modelled using polyurethane foam as the ship’s side structure. The collision process was analysed and the results of model-scale tests, large-scale experiments, and a simple analytical model were compared, showing that there was both quantitative and qualitative agreement in the results of the experiments conducted at different scales. The analytical model yielded good quantitative assessment of the deformation energy.  相似文献   

19.
船体梁的总纵强度是反映船舶结构安全可靠的最基本的强度指标。船体结构极限强度评估对于船舶结构初步设计、使用、维护和维修都非常重要,因此船体梁极限强度研究成为近几十年来船舶工程界的热点研究课题之一。到目前为止有两种典型的加筋板和船体梁的极限强度分析方法,它们是直接计算法和逐步破坏分析法。本文基于加筋板单元的平均应力应变曲线和逐步破坏分拆方法,提出了加筋板和船体梁极限强度的简化分析方法,考虑了初始挠度和残余应力对加筋板单元极限强度的影响。数值结果表明,采用本文简化方法得到的结果与有限元计算结果或其它逐步破坏分析结果比较符合。  相似文献   

20.
In this paper, an approach for integrating the data obtained from structural health monitoring (SHM) in the life-cycle performance assessment of ship structures under uncertainty is presented. Life-cycle performance of the ship structure is quantified in terms of the reliability with respect to first and ultimate failures and the system redundancy. The performance assessment of the structure is enhanced by incorporating prior design code-based knowledge and information obtained by SHM using Bayesian updating concepts. Advanced modeling techniques are used for the hull strength computations needed for the life-cycle performance analysis. SHM data obtained by testing a scaled model of a Joint High-speed Sealift Ship is used to update its life-cycle performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号