首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
根据渗流力学、弹塑性力学以及多场耦合理论,构建隧道开挖流固耦合模型。以湖南省湘西州古丈县张吉怀铁路毛坪村隧道施工为例,选取典型断面,采用COMSOL 模拟耦合作用下隧道开挖引起的围岩渗流场及塑性区变化规律,并将拱顶沉降值与现场实际观测结果进行对比。结果表明:隧道开挖扰动原岩发生应力重分布,使拱腰和拱底附近塑性区范围发生显著变化;对比不考虑流固耦合作用和考虑流固耦合作用下的模拟结果可知,流固耦合作用下隧道拱腰和拱底处围岩的应力值相对较高,高出的应力值最大可达0. 2 MPa,且流固耦合作用下隧道围岩变形稳定后,拱顶沉降值可达55 mm。采取喷砼支护措施后,隧道拱腰和拱底处的应力集中区范围显著减小,隧道拱顶沉降值可降低至26 mm。由此可见,流固耦合作用增加了围岩的应力和位移,支护措施减小了拱腰和拱脚处应力集中区范围和拱顶沉降值。  相似文献   

2.
为了确保施工安全,为高含水量黄土隧道施工提供准确及时的隧道变化情况,现以宝兰客运专线上某高含水量黄土隧道为工程背景,首先对隧道CRD开挖过程进行有限元数值模拟,然后通过现场监测数据,研究了拱顶下沉、周边位移等参数随时间变化的规律及分布特征,并且分别对现场实测数据进行了回归分析.结果表明:拱顶下沉、周边位移时程曲线都是呈阶梯形,比较符合隧道CRD开挖的一般规律;通过回归分析可知幂函数的相关系数最大;通过有限元数值模拟可知竖向的位移主要集中在拱顶、右拱肩和仰拱以下的竖直区域,周边位移主要集中在拱腰与拱脚附近,并且模拟计算结果与实测结果基本吻合.  相似文献   

3.
偏压隧道一般位于风化破碎岩层、堆积层、冲积层或坡积层等较松软地层,埋深往往较浅,在隧道开挖过程中,洞顶下沉较大,难以形成自然平衡拱.通过研究广珠铁路江门隧道典型断面围岩周边水平位移、拱顶沉降和地表沉降的实测数据,分析了隧道开挖引起围岩变形与破坏特征.分析表明,周边水平收敛和拱顶沉降均为开挖初期变化速率较快,开挖一段时间后变形趋于稳定.  相似文献   

4.
以昌景黄高铁瑶里隧道暗挖段DK90+550~DK90+610作为研究断面,建立三维数值模型,研究隧道双侧壁导坑法施工过程中隧道的变形和支护结构的内力,深入分析了双侧壁导坑法临时竖撑曲率半径和初期支护钢拱架间距的影响。研究表明,隧道施工过程中隧道拱顶处围岩竖向位移较大,隧道拱腰处围岩水平位移较大。当开挖左侧导坑中间土体和拆除临时支撑时,拱腰水平位移会显著增大。随着双侧壁导坑法临时竖撑曲率半径的增大,围岩的竖向位移逐渐减小,水平位移逐渐增大,初期支护钢拱架的应力逐渐减小,且临时竖撑曲率半径对围岩竖向位移的影响更加显著。围岩竖向位移和水平位移均随着初期支护钢拱架间距的增大而增大,且钢拱架的变化对拱顶围岩竖向位移的影响更为显著。  相似文献   

5.
近水平软硬互层围岩公路隧道初期支护内力分析   总被引:1,自引:0,他引:1  
将近水平软硬互层围岩等效为横观各向同性岩层,推导其密度、弹性模量、泊松比等材料参数。以广南高速公路文家垭隧道为分析对象,根据横观各向同性围岩参数建立平面应变有限元模型,结合现场测试数据分析近水平软弱围岩台阶法施工过程中初期支护的受力状态。研究表明:上台阶开挖后初期支护受轴向压力,拱顶和拱墙腰向内弯,而拱腰向外弯;下台阶开挖后,初期支护继续受轴向压力,拱顶和仰拱向内弯,拱腰和拱墙腰向外弯。研究结论与拱顶沉降和拱底隆起现象相符合。  相似文献   

6.
将近水平软硬互层围岩等效为横观各向同性岩层,推导其密度、弹性模量、泊松比等材料参数。以广南高速公路文家垭隧道为分析对象,根据横观各向同性围岩参数建立平面应变有限元模型,结合现场测试数据分析近水平软弱围岩台阶法施工过程中初期支护的受力状态。研究表明:上台阶开挖后初期支护受轴向压力,拱顶和拱墙腰向内弯,而拱腰向外弯;下台阶开挖后,初期支护继续受轴向压力,拱顶和仰拱向内弯,拱腰和拱墙腰向外弯。研究结论与拱顶沉降和拱底隆起现象相符合。  相似文献   

7.
为了提高大断面隧道施工安全性,以某软岩大断面隧道开挖支护为对象,利用FLAC 3D有限元分析软件,模拟分析了某大断面隧道在微台阶开挖法下隧道围岩变形特性,研究得到上台阶开挖完成后围岩塑性区分布情况、掌子面位移分布情况,对比下一进尺完成后得到围岩等效塑性区大小及位置变化情况;并通过在模型中布设相应监测点,分析开挖过程中的围岩位移变化情况,得到拱顶沉降、拱腰水平位移变化规律以及最大变形值,分析结果表明微台阶法在该软岩大断面隧道开挖过程对围岩变形的控制效果较好。  相似文献   

8.
为探明高地应力场主应力方向对软岩隧道围岩稳定性的影响规律,采用自主研发的"隧道三维应力场模拟试验系统"开展了大型三维地质力学模型试验,研究了最大水平主应力与隧道轴线平行和垂直两种工况下软岩隧道的围岩稳定性.研究结果表明:最大水平主应力与隧道轴线平行时,拱顶沉降和拱脚收敛的最终值分别为-0.221 m和-0.454 m,拱顶、左拱脚、右拱脚和仰拱处的围岩压力分别为0.478、0.361、0.416 MPa和0.261 MPa;最大水平主应力与隧道轴线垂直时,拱顶沉降和拱脚收敛的最终值分别为-0.309 m和-0.548 m,拱顶、左拱脚、右拱脚和仰拱处的围岩压力分别为0.579、0.652、0.593 MPa和0.327 MPa;两种工况下,围岩压力的最小值均出现在仰拱处、最大值均出现在墙脚处,围岩的径向应变增量均为拉应变增量,切向应变增量均为压应变增量,说明隧道开挖导致洞周围岩径向应力减小、切向应力集中.   相似文献   

9.
围岩及支护结构的位移、应力分布变化规律是隧道开挖是否安全的评价标准。针对隧道开挖计算的复杂性,采用有限元对其建立三维数值模拟。利用ANSYS对隧道开挖过程进行模拟,得到支护结构的位移、应力分布变化规律。数值计算结果表明,竖向最大位移发生在拱顶处,而支护最大压应力出现在拱腰。  相似文献   

10.
采用超前小导管进行隧道支护,并分析了超前支护对隧道拱顶沉降、周边收敛和应力分布的影响。结果表明:超前小导管能有效减小拱顶沉降,尤其在支护时效果更显著,沉降值呈台阶状上升;超前小导管对拱底位移控制效果不明显;超前小导管对周边收敛变形的控制效果主要体现在拱腰位置,其次是边墙,最后是拱肩;超前小导管对应力分布的影响不大,水平应力最大值集中在拱腰,竖向应力最大值集中在拱顶和拱底,在黄土隧道开挖过程中应注意拱底、拱顶和拱腰位置处的应力变化。  相似文献   

11.
以离军高速公路黄土连拱隧道为工程背景,对地表沉降、地质和支护状况、拱顶下沉和水平收敛进行了现场监测,并采用有限元方法分析了隧道围岩拱顶下沉和水平收敛的变化规律,进而研究了黄土连拱隧道三导洞法施工的围岩变形规律和影响因素.结果表明:黄土隧道Ⅳ类围岩比Ⅴ类围岩变形小,围岩稳定较快;三导洞施工法开挖中、左、右导洞和断面开挖时,围岩应力一直处于重新调整中,变形也在不断变化,且施工中开挖顺序对围岩变形有很大影响,在洞室开挖施工中,要密切注意拱腰及拱顶的变形情况,加强Ⅴ类围岩监测,及时进行临时支护,尽早完成右洞初期支护,以防变形过大而围岩失稳;影响黄土隧道围岩变形的主要因素是黄土的工程特性和地质工程环境.  相似文献   

12.
不同的开挖进尺会引起隧道相应的围岩位移变化,围岩位移超过容许值将会影响隧道的安全性。以长茂山双车道浅埋隧道为例,采用有限元软件ABAQUS对台阶法不同开挖进尺条件下的隧道施工进行三维数值模拟,从位移及应力两方面来分析台阶法不同开挖进尺的围岩变化规律。研究表明:围岩位移变化主要在拱顶及拱顶附近且侧拱两侧位移曲线呈对称分布;围岩的最大位移变形量随开挖循环进尺增大而相应增大,当开挖进尺增大到6 m后,围岩发生最大位移增长滞缓;围岩竖向位移和拱顶应力随开挖进尺变化的规律可以采用Logistic增长函数进行拟合;提出了循环开挖进尺为4 m的合理施工方法。  相似文献   

13.
大跨径地铁车站交叉口数值分析   总被引:1,自引:0,他引:1  
以在建的重庆.西部国际会展中心配套市政交通工程高义口车站为研究对象,采用有限元数值软件ANSYS三维数值模拟大跨径地铁车站与出入口通道交叉部位,在有出入口与无出入口情况下,对车站交叉口附近围岩和初期支护力学行为进行对比分析。同时,在隧道施工过程中对围岩位移进行监测,分析围岩的位移状态随时间的变化规律,验证数值分析可靠性。分析结果显示,出入口开挖对交叉口区域内围岩的位移和应力都产生显著影响,交叉口拱顶和底部位移影响较大,应力在拱顶、拱腰和底部都变化明显。  相似文献   

14.
采用数值模拟方法, 在不同震级人工地震波作用下, 研究了具有近距离平行地裂缝的地铁隧道的加速度、位移和内力特征, 计算了地裂缝的影响区域、围岩动土压力变化规律和隧道与围岩接触动土压力变化规律。研究结果表明: 在地表距隧道水平距离约25~50m范围内加速度响应存在一个附加放大区域; 当输入地震动强度较小时(50年超越概率为63%), 地铁隧道拱顶和拱底处相对水平位移都较小(约为0.39mm), 但随着输入地震动强度的增大(50年超越概率为2%), 拱顶和拱底的相对水平位移均逐渐增大, 最终增大至1.53mm; 在地震动作用下, 隧道结构的左、右拱肩和拱脚处的轴力都较大, 其中右拱脚处的轴力最大, 为1 926kN; 隧道结构的左、右拱腰处的弯矩和剪力都较大, 其中最大弯矩与最大剪力在右拱腰处, 分别为78.54kN·m与1 830kN; 随着地震动强度的增大, 隧道结构的内力逐渐增强; 地裂缝附近的动土压力较大, 并向两侧逐渐减小; 在中震作用下隧道拱顶处, 地裂缝上盘影响宽度为25m, 下盘影响宽度为20m, 在拱底处, 地裂缝上盘影响宽度为26m, 下盘影响宽度为22m;在大震作用下, 地裂缝上、下盘影响宽度较中震时增大约35%;地裂缝附近的隧道拱顶和拱底的动土压力变化规律与无地裂缝时基本一致, 但隧道结构附近的动土压力较大, 其最大值为138kPa; 在地震动作用下, 隧道结构拱腰处的接触动土压力增量较大, 右拱腰处即靠近地裂缝一侧最大, 增量为45.27%, 拱顶次之, 增量为13.41%, 拱底最小, 增量为6.86%。   相似文献   

15.
高速公路隧道施工全过程三维弹塑性数值模拟   总被引:2,自引:0,他引:2  
为了获得开挖过程中隧道结构体应力、应变和位移规律,以渝黔二期笔架山隧道北端洞口段实态建模,采用有限元程序对施工全过程进行了三维弹塑性数值模拟,并与现场实测数据进行了比较.研究结果表明,开挖对围岩影响较大的范围在开挖面四周5m以内,且上台阶开挖的影响大于下台阶开挖;围岩沉降和水平位移在开挖前已完成1/3;围岩塑性区位于开挖面前1.5m范围内,锚杆主要受本施工段上台阶开挖的影响.  相似文献   

16.
依托某市地铁工程实例,借助ABAQUS建立数值模型,对临近高层建筑群桩基础隧道开挖围岩变形特性进行研究。研究结果表明:围岩变形随隧道开挖面应力释放逐渐增大,具体表现为"快速-缓慢-稳定"3种类型;相比未考虑临近高层建筑群桩基础荷载时,考虑建筑群桩基础附加荷载后隧道拱顶位移、围岩收敛和地表沉降分别增加了6.8%、8.6%和9.8%;最终稳定时拱顶位移和围岩收敛控制在5 mm以内,地表沉降控制在7 mm以内,距离群桩基础一侧横向地表沉降主要影响区域约为3.5倍隧道开挖洞口直径。围岩变形整体较小说明群桩基础荷载对其影响相对较小,同时亦可反向推断隧道施工对高层建筑影响较弱。研究成果能够为类似工程实践及进一步探究围岩变形特性提供重要理论参考。  相似文献   

17.
针对隧道车行横洞施工对主洞结构产生影响,以运城-灵宝高速公路中条山隧道工程为依托,采用现场试验和三维有限元仿真的方法,对车行横洞施工阶段主洞的变形规律进行了研究。研究结果表明:车行横洞施工对主洞的影响,在时间上主要表现在交叉口初支拆除和横洞的第1个开挖步,随着横洞开挖深度的增加,主洞结构的变形逐步趋于稳定;车行横洞施工对隧道主洞围岩变形影响主要表现为主洞拱顶下沉量增加和开挖侧拱脚水平位移减小,主洞未开挖侧拱脚水平位移影响不大。  相似文献   

18.
为研究隧道近距离下穿施工对既有隧道沉降、衬砌应力和地表沉降扰动机理,以某下穿隧道工程为例,基于FLAC 3D有限差分软件建立隧道施工下穿既有隧道三维数值模型,分析隧道施工过程引起既有线沉降及衬砌应力变化规律。分析结果表明,隧道开挖过程中,地表最大沉降为3.8 mm,既有线隧道最大沉降为7.75 mm,位于靠近施工线路一侧拱腰处,且拱顶最大沉降为5.38 mm;未开挖前既有线衬砌最大应力7.798×105Pa,隧道贯通后,衬砌最大应力为1.124×106Pa,增幅达44%。研究结果为保证施工安全及优化施工控制措施具有重要作用。  相似文献   

19.
以某隧道作为研究对象,对隧道施工过程中的相关参数进行监测,同时根据已知参数对隧道施工进行模拟,得到以下结论:隧道上、下台阶位移收敛曲线可分为三段,在初期位移呈现快速增长,之后增长速度逐渐缓慢,最终趋于稳定,隧道上、下台阶位移稳定值分别在10.2mm和10.1mm左右。拱顶沉降变化曲线可以分为两段,即初期快速增长,之后趋于稳定,稳定值在11.1mm左右。地面沉降图基本呈现出高斯分布趋势,随着时间的推移沉降曲线基本趋于不变,在第八次测量时可以看到最大沉降量为9.8mm。隧道开挖后拱顶和拱底周围出现应力释放,两侧拱腰有些位置出现集中,拱顶和拱底位置应力大小分别为0.36MPa和0.48MPa,左右侧拱腰附近最大应力分别为0.98MPa和1.02MPa。  相似文献   

20.
超浅埋隧道工程施工中除保证自身施工稳定性外,也需要严格控制隧道周边土体与路基的沉降变形,基于以上问题,现以厦门某超浅埋软岩大断面隧道开挖工程为背景,通过理论分析、数值模拟以及模型试验等手段,对不同埋深下的路基以及洞室变形规律进行分析研究,并在此基础上提出了相应的控制措施.研究结果表明:1)超浅埋大断面隧道开挖,埋深对隧道围岩以及地面变形的影响较大,开挖时为保证隧道稳定性以及降低对地面的影响,埋深应尽量增大,同时注意支护的合理性与及时性.2)超浅埋大断面开挖过程中,埋深与隧道周边围岩的变形成正比,但不影响其分布状态;由于路基的相对稳定性,路基下拱顶的应力与形变变化率均较大,容易造成坍塌;且隧道开挖过程中,拱脚处变形与应力均较大,容易造成围岩破碎,需要加强支护.3)开挖过程中,随埋深增加,地面以及路基变形逐渐较小;与周边土体表面相比,路基的地面沉降相对较小,但影响范围相对较大,产生较大面积的不均匀沉降,破坏路基整体性,需要加强路基地面不均匀沉降的监测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号