首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 500 毫秒
1.
研究气体作用于固体表面湍流压力脉动与声压脉动的试验分离技术。论述气体中两种压力脉动的区别,包括产生机理、传播速度和穿透效率等。结合较为常用的电容式膜片表面声压测量和较新的湍流滤网,在同一测点上分别使用以上两种测试技术进行测量,形成一种用于分离两种不同压力脉动的测试方法。通过一组针对两种压力脉动的声学风洞试验,实测两种测试技术在频域上的差别,结果证明用该测试方法能较为有效地分离两种压力脉动。  相似文献   

2.
根据计算进气格栅开、闭两种状态的整车模型的空气动力学性能参数对比风洞实验结果,确定了原设计的整体流动仿真的精度;而基于该模型运用DES法计算的侧窗表面测点的声压级与实验结果对比,确定了2mm网格气动噪声仿真的精度。对新方案和原设计运用Q准则的流态显示,表明新方案后视镜尾流区的流动状态得到改善;侧窗表面的湍流压力脉动的对比表明,后视镜外形的改动对湍流压力脉动影响很小;而通过Lighthill声类比法获得的声压脉动却有显著差异,新方案在2 000~8 000Hz范围内的声压脉动明显减小。Beamforming测试的声源分布和改进效果,与CFD计算预测一致,且与车内的声压级测试有很好的相关性。以上研究表明:Q准则的流态显示可用于气动噪声的定性评估;声压脉动是后视镜气动噪声仿真最主要的评价依据,不可忽略。  相似文献   

3.
针对后视镜引起的前侧窗与车内气动噪声问题,采用计算流体力学(CFD)方法对某商用车进行车外后视镜区域数值模拟和车内噪声预测的研究。稳态分析采用RANS模型中SST(Menter)k-ω模型,瞬态分析采用基于SST(Menter)k-ω的分离涡模拟(DES);通过分析后视镜侧窗区域的稳态静压力与瞬态动压力、速度和涡量云图,揭示了因A柱后视镜而产生车窗表面的湍流压力脉动的机理;同时求解瞬态流场获得两侧车窗表面湍流压力脉动载荷。采用声学FEM方法将车窗表面湍流压力脉动作为边界条件来计算气动噪声的传播,基于车内声学空间不同频率的声压级云图分布规律,说明了车内气动噪声主要集中在中低频段和声压级最大的分布区域;驾驶员左耳旁声压级曲线展示了20-2500 Hz频段内声压级变化规律。最后进行实车道路滑行测试,证实了气动噪声在车速80-110 km/h时较为明显的结论;采用CFD结合声学有限元的方法可较为准确地预测车内100-2500 Hz气动噪声的声压级,为优化后视镜、降低驾驶室内气动噪声提供仿真和试验的技术方案。  相似文献   

4.
高速车辆气流噪声的试验研究   总被引:2,自引:1,他引:2  
在分析了车辆气流噪声与表面脉动压力关系的基础上,在风洞中对车辆表面脉动压力的分布、频率特性及速度特性进行了试验研究。结果表明:由于气流在A立柱后产生分离并形成螺旋向上的纵向涡,使得在前侧窗附近的表面脉动压力明显地高于其他区域,成为主要的噪声源区之一;车辆表面脉动压力的能量与气流速度的4次方成正比;车辆表面脉动压力的幅值在低频率时较大,并随频率的增大而减小。比较了不同形状的A立柱对侧窗表面脉动压力的影响,对降低汽车气流噪声作了初步探讨,发现A立柱形状与脉动压力的特性关系不大,但对脉动压力的大小影响较大。  相似文献   

5.
通过运用脱涡模拟(DES)方法对两种网格尺寸和两种几何细节的模型进行计算流体动力学(CFD)分析,获得侧窗表面的湍流脉动声压级,并与风洞试验结果对比,结果表明:1 mm网格的精度较高,而2 mm网格在2 000 Hz以后出现明显误差;造型模型在100 Hz低频段的误差稍大于整车模型,但在中频和高频段的精度等同于整车模型。Q准则显示1 mm网格可捕捉尺寸更小而涡量更大的涡核,这也正是1 mm网格在高频段精度更高的原因。考虑到计算效率,建议采用造型模型进行湍流压力脉动的计算,且在侧窗区域使用1 mm的加密区。  相似文献   

6.
通过分离涡模拟(DES)进行整车外流场的三维瞬态仿真,得到车身表面压力脉动,并采用FW-H声学模型对气动噪声进行仿真分析。通过与类后视镜气动噪声试验数据相比较,验证了仿真的准确性。对有、无后视镜工况下,后视镜区域瞬态流场、车身表面压力脉动、侧窗监测点声压级进行比较,揭示了后视镜区域气动噪声产生机理,为降低汽车气动噪声提供技术支持。  相似文献   

7.
葛芚 《汽车工程》1996,18(2):98-102
本文通过风洞试验研究了桑塔纳轿车后视镜产生的脉动压力场的分布情况。发现其脉动压力的能量主要集中在轿车通风窗与前侧窗的外表面位置,且其能量很大,相当于90km/h的车速下,最大处脉动压力级达132.5dB,成为一个大声源,透过玻璃向车内传递气流噪声。最后,根据理论推导证明了传递到车室内的气流噪声功率与脉动压力的平方成正比,并近似估算出在90km/h速度下由桑塔纳后视镜产生的传递到车内的气流噪声功率约为2.51×10~3W。  相似文献   

8.
汽车高速行驶时的气动噪声对汽车的舒适性影响很大,后视镜后方涡流对车身的脉动压力直接影响气动噪声的形成,而非光滑表面结构的合理布置能够对涡流起到一定的控制作用。采用计算流体力学(Computational Fluid Dynamics,CFD)中的RANS与分离涡模拟(Detached Eddy Simulation,DES)对长方体模型进行气动噪声数值仿真,并将其结果与试验结果对比,评估仿真方法对气动噪声预测的准确度。将凹坑型非光滑单元体布置在侧窗全连接、侧窗半连接、门外板连接三种不同基座造型的后视镜表面进行仿真计算。对比分析非光滑表面对流动状态、涡流结构及侧窗监测点声压级频谱的影响,探讨非光滑结构的扰流效应对后视镜区域流场形成的控制作用及其气动降噪效果,为有效控制后视镜区域流场结构,抑制涡激振动,改善乘员舱舒适性提供参考。  相似文献   

9.
高速车辆外部流场中前侧窗区域对气动特性影响比较大,因为该区域存在着气流分离和再附着,并伴有剧烈的压力脉动,不仅影响车辆的气动阻力,还严重影响气动噪声。本文通过风洞实验手段,设计了用于测试车辆表面脉动压力和静压力的测试系统,并着重研究了该区域表面脉动压力和表面静压力在不同风速下的分布情况,及相互之间的关系。  相似文献   

10.
杨坤  顾彦 《上海汽车》2012,(7):41-44
对某轿车的侧窗风噪进行数值分析,数值结果是通过使用商用软件PowerFLOW获取的.该软件数值分析的关键是其数值方式基于著名的格子布尔兹曼法(LBM),并结合了RNG湍流模型.这种方式能精确捕捉复杂模型的高雷诺数流动的基于时间的气动特性,包括气动噪声,频谱分析在仿真数据上进行.该仿真阐述了该数值方法预测由复杂流动现象引起的湍流波动的能力,介绍了先进的视觉和分析系统,用于获取近壁流场的瞬时现象.这些技术有助于识别车辆表面压力脉动产生的噪声以及在不同的流动工况下对噪声进行比较.  相似文献   

11.
为研究车身A柱和后视镜的风噪,建立汽车简化模型。基于气动声学风洞试验,设计了外形配置不同的5种模型。以A计权声压级和语音清晰度为评价指标,对侧窗外表面、远场和车内风噪展开对比分析。结果表明:A柱涡区域内高频风噪衰减较快;方形A柱对后视镜风噪具有明显掩蔽作用;后视镜风噪中存在压力级峰值,对应特征频率随风速升高而增加;随风速升高,各模型车窗、远场和车内风噪均明显增加;偏航时,车窗风噪在全频段内表现出迎风侧降低、背风侧升高的趋势,远场风噪与车内风噪在不同频段展现相同趋势。  相似文献   

12.
本文中对某一SUV风噪的预测与控制进行研究。首先基于风洞测试进行风噪声源特性与传递路径的分析,发现泄漏噪声主要发生在500 Hz以上中高频段,车底风噪主要集中于800 Hz以下中低频段,而在外形噪声中,由车顶和四门传递的风噪的贡献大于翼子板。然后基于气动噪声直接计算法和统计能量分析对外形噪声进行仿真,并结合风洞测试分析了湍流模型、网格尺寸和波数分析方式对风噪仿真精度的影响。结果表明,大涡模拟的高频风噪衰减低于分离涡模拟,且大涡模拟对高频风噪的仿真精度和计算效率都比分离涡模拟高;在计算资源允许范围内对比不同网格尺寸,最小网格为2 mm时侧窗声压级的截止频率最高可达2 000 Hz;单区域波数分析低估了中低频风噪声的能量,精度较低。多区域波数分析中,声能量较低的区域对仿真精度影响较小。最后基于贡献度分析提出后视镜支臂减薄和安装在车门上两种改进方案进行仿真,结果表明,改进后车内总声压级分别降低1.38和1.93 d B,语音清晰度提升0.4%和1.1%。  相似文献   

13.
文中从后视镜风噪性能设计出发,针对后视镜镜臂上表面倾斜角、镜臂厚度、镜臂长度、后视镜安装基座厚度、后视镜镜头内侧面与侧窗的夹角等参数,分别进行了针对性的研究分析,并总结形成了各设计参数在后视镜风噪开发中的影响规律。  相似文献   

14.
隧道交通噪声数值模拟及调查研究   总被引:2,自引:1,他引:1  
隧道交通噪声主要来源于轮胎与路面接触噪声,建立隧道内交通噪声数值模拟模型,通过有限元计算,分析了隧道不同位置交通噪声的变化规律.数值模拟结果表明,隧道内不同位置的交通噪声大小差别较大,随着距隧道洞口的距离增大,噪声水平增加,隧道中部比隧道进出口处噪声高约8~10 dB,比隧道外高16~18 dB,隧道洞体对隧道内交通噪声影响较大.通过现场测试隧道交通噪声,结果表明隧道内交通噪声数值模拟结果与实测结果较为吻合,说明所采用的数值模拟模型是可靠的.  相似文献   

15.
研究了在整车开发前期,通过油泥模型在气动风洞中测试前端模块的风速来标定热管理CFD模型的方法,分解了测试流程和标定方法,使标定后的模型与试验一致性较好。利用标定后的模型可以在项目开发早期提升热管理机舱内流分析准确度,使发动机舱内流场的优化做到空气动力学性能和热管理性能的最佳平衡。  相似文献   

16.
基于自主研发的真实道路来流参数测量系统,对多地区、多场景真实道路行驶来流湍流强度进行了测试,发现车辆道路行驶时来流湍流强度远高于风洞水平,道路平均湍流强度为4%,沿海地区湍流强度最高可达20%,在跟车或超车时湍流强度可达 28%。在汽车风洞内模拟了道路行驶跟车、超车等试验场景,对测试车辆气流环境进行了采集分析。结果表明,跟车和超车时,后车来流湍流强度较高且伴随有速度损失,湍流强度及速度损失大小与前车尺寸和跟车距离有关,湍流强度分布范围为2%~33%,与道路实测相当,且速度损失最大为19%。进一步探究了前车放置角度、风洞风速对后车来流湍流强度的影响规律,建立对后车来流湍流强度定量调节的方法。完成了双车风噪测试,结果表明,风洞内高湍流强度环境车内风噪测试调制频谱结果与道路行驶测试结果相符,车内风噪频谱曲线差异主要集中在小于70 Hz的低频段。  相似文献   

17.
为探究横风作用下钢桁梁桥上列车双车交会过程中气动力系数的突变机理,以某一大跨度公铁两用钢桁梁桥为背景,首先根据XNJD-3风洞实验室的尺寸设计了一套移动车辆模型试验系统;然后根据风洞阻塞比的要求设计了几何缩尺比为1∶30的桥梁和车辆试验模型;最后测试了横风作用下桥上列车交会过程中移动车辆模型的气动力。为尽可能地降低试验系统对运动车辆气动力的干扰,对原始时程数据进行了低通滤波处理,并分析了车速、风速、合成风向角、车辆所在轨道位置等因素对车辆气动力系数的影响。试验结果表明:双车交会时,背风侧运动车辆的气动力系数具有明显的突变趋势,迎风侧运动车辆的气动力系数变化较为平稳;列车交会时突变区域主要受运动车辆引起的列车风速的影响,且随车速的增加而增大,横风风速对突变区域影响较小;交会过程中背风侧车辆升力系数和侧向力系数的突变量随合成风向角的增大呈增大趋势,力矩系数突变量对合成风向角的变化不敏感;横桥向列车所处轨道位置影响其气动力系数。试验结果可为研究横风作用下高速列车-桥上交会过程的行车安全提供数据支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号