首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
根据道路实际情况,提出考虑多车信息的改进PFV策略,并进行参数标定;将跟驰策略和换道规则相结合,建立双车道连续元胞自动机模型,采用周期边界式条件进行模型仿真,比较不同密度下双车道交通流变化情况和车辆换道行为,通过仿真结果的时空图显示车辆换道造成的系统速度延迟,通过比较双车道系统的交通流密度-交通流量、交通流密度-行驶速...  相似文献   

2.
车道利用率反映的是单一方向路段交通量在不同车道上的分布情况,它影响交通流的稳定性,是道路通行能力和交通安全的重要影响因素。针对不同流量条件下车道利用率的不确定性和现场数据采集困难等特点,应用车辆跟驰、车道变换等微观交通流仿真模型在一体化仿真环境下进行模拟研究,得到双车道和三车道路段流量换道次数以及流量车道利用率关系的基本规律。  相似文献   

3.
换道行为是影响高速公路运营安全的重要因素之一,而换道时间为交通安全分析模型中的关键参数,在换道时间标定中应考虑不同交通状况和不同行驶速度的影响。为此,在交通状况不同的多条高速公路进行了一系列的现场实车试验,通过行车记录仪采集连续的行车视频,采用计算机视觉技术中的Canny算法识别行车视频图像中的车道边缘线,获取精确的车辆轨迹与车道边缘线的偏移值,实现对车辆换道行为的准确识别。根据车载辅助驾驶装置记录的试验车辆换道时的行驶速度,以及换道影响区域内试验车辆邻近的各种车辆,对车辆换道时所处的不同交通状况和行驶速度组合条件下的车辆换道时间进行分析研究。结果表明:不同交通状况下的高速公路换道时间均服从对数正态分布;换道时间与车辆换道影响区域内的交通状况存在显著联系,车辆在处于低密度交通状况下的换道时间比在中、高密度交通状况下的换道时间长;当车辆在处于低密度交通状况和低行驶速度下换道时,换道时间比其他交通状况和行驶速度组合下的长,而在中、高密度交通状况下车辆的换道时间并不受车辆行驶速度的影响。本研究成果可为自动驾驶、微观交通仿真等相关模型的换道行为参数标定提供参考。  相似文献   

4.
朱晓东  王文璇  闫梦如  孙昊 《公路》2022,67(2):346-359
分析了HighD和NGSIM两个开放的自然驾驶数据集中交通流参数(如速度和流量)与安全指标(如车头空距(DHW)、车头时距(THW)和碰撞时间(TTC))的异同.首先针对两个数据集分析了交通状态、不同车道和车辆类型等参数对交通流参数的影响.然后,针对车辆跟驰情况,研究了基于不同车道和不同车型的安全指标分布,探讨了安全指...  相似文献   

5.
在人工驾驶车辆、自适应巡航控制(ACC)车辆和协同自适应巡航控制(CACC)车辆的行车行为特征分析的基础上,运用跟驰模型和换道模型分别构建人工驾驶车辆、ACC车辆及CACC车辆在下匝道分流区混合交通流仿真环境,解析CACC车辆占比对混合交通流安全性的影响。选取全速度差模型、ACC跟驰模型、CACC跟驰模型分别作为人工驾驶车辆、ACC车辆、CACC车辆的纵向跟驰模型,利用随意换道模型、强制换道模型分别构建下匝道分流主线段、远近端区的横向换道模型。基于碰撞时间(TTC)、暴露碰撞时间(TET)、整合碰撞时间(TIT)等参数构建交通流安全性评价指标。利用MATLAB进行数值模拟,仿真分析不同CACC车辆占比下的混合交通流安全性。结果表明:CACC车辆占比为40%~50%时,混合交通流安全性恶化最严重,TET和TIT分别增加约68%和89%,车辆速度离散系数为0.9以上;通过在下匝道分流区设置远端强制换道区(设置长度≤ 1 000 m),可有效降低混合交通流的追尾碰撞风险。   相似文献   

6.
随着高速公路上车流量的增多,车辆超车和跟驰现象明显,单一的断面参数无法准确表征车辆在道路上行驶状况。新型的区域检测器可以追踪车辆,检测范围为100m,得到车辆在检测区域内连续的速度变化和行驶轨迹;同时可以分不同车型检测交通量,分车道统计交通流区间平均速度、时间占用率。根据区域检测器所能得到的关于车辆在检测区间内速度变化的交通参数数据,建立高速公路交通状态判定模型。新型的区域检测器对车辆在道路上的行驶状态可以更加准确的表征,为高速公路交通运行状态分析提供了更可靠的数据来源,可以更加准确,实时地确定公路交通状况,为公路管理部门提供进一步的决策支持。  相似文献   

7.
针对路面破损条件下,驾驶员为获得更高行驶效益而进行车道变换的现象,以元胞自动机Na Sch模型为基础,引入慢启动规则和换道规则,建立路面破损条件下双车道车辆微观换道模型。以换道需求、车道选择、间隙检测和换道执行4个过程确立仿真流程,对不同路面破损条件下的驾驶员特性、交通流特性和车辆换道特性进行仿真分析。从车辆运行角度对路面破损等级进行划分,依据效用理论计算车辆在不同车道上的行驶效益,建立车辆车道选择模型,并定义换道系数,分析单块路面破损对车辆换道行为的影响。基于驾驶员的行为差异,在仿真过程中将驾驶员分为冒险型、机敏型、谨慎型和迟缓型4类,通过设置仿真参数,对不同类型驾驶员在路面破损条件下的行为特性进行分析。结果表明:换道系数随路面破损等级的增加而不断增大,破损等级越高,车辆在破损路段行驶的效益越低,进一步增大驾驶员进行车道变换的概率,能够很好地模拟路面破损对车辆换道行为产生的影响。冒险型驾驶员在中密度区的换道率最高,随着路面破损程度的增加,车辆换道率和行驶速度方差随之增大,说明破损路面会降低车辆行驶效益,加剧换道行为的产生,同时增加车辆行驶速度的波动性,对交通流正常运行产生一定干扰,不利于行车安全。  相似文献   

8.
为了精确模拟城市交通网络中行驶车辆之间的跟驰行为,在研究跟驰状态下车辆行驶特性的基础之上,考虑车辆行驶的最大限制速度和前车速度,对基于最大车速的广义力模型进行改进.改进的跟驰模型将处于跟驰状态的车辆与前车之间的期望车间距看作是与前车、目标车车速相关的时变量.将该模型与基于最大速度的广义力(GF)模型分别用于模拟车辆跟驰过程,与实测数据进行图表对比分析,表明该模型的仿真结果更接近实际的交通流特性.  相似文献   

9.
判定跟驰状态的研究   总被引:8,自引:1,他引:7  
在大量实际观测交通流数据的基础上,深入分析跟驰车辆运行特性与车头时距的关系,提出利用相对速度绝对值随车头时距变化的规律定量地判定车辆行驶状态的新方法,即利用坐标变换确定车辆跟驰状态与自由行驶状态转折点。通过大量实测数据对该方法的验证表明,车头时距低于5s的车辆处于跟驰状态,而大于8s的车辆处于自由行驶状态;同时,车速对跟驰状态的界限没有显著影响。  相似文献   

10.
为更好地研究车辆跟驰特性,缓解道路交通拥堵,在车辆跟驰行为受前导车和道路环境等影响的基础上,将单车道道路虚拟为一维管道,道路上的跟驰车辆抽象成相互作用的分子。考虑需求安全距离和期望速度2个影响因素,基于分子动力学构建车辆相互作用势和分子壁面势函数,并建立基于相互作用势函数的分子跟驰模型,给出跟驰车辆的加速度模型。在实际交通环境中建立视频采集试验路段,采集试验路段不同点位的交通流样本,从视频中获得模型所需数据,并将数据分为两部分,一部分用于参数标定,其余用来模型验证。将车辆运行状态分为常态行驶、起动加速和减速停车3种。根据实测交通数据分别对3种车辆运行状态下的经典GM模型和分子跟驰模型进行参数标定,选取3种不同运行状态下的试验数据各3组,代入标定后的分子跟驰模型与经典GM模型计算模型输出加速度,并与实测加速度进行误差分析对比,结果表明,分子跟驰模型输出加速度与实测加速度之间的误差,总体上比经典GM模型要小,而且根据绝对误差方差显示,分子跟驰模型较经典GM模型稳定性更高。选取有代表性的一组跟驰过程进行数据绘图,对比可以看出分子跟驰模型输出加速度与实测数据变化趋势几乎一致,其拟合效果比经典GM模型更好。  相似文献   

11.
介绍了汽车运行状态远程监测系统的组成和开发情况。该系统通过车载子系统采集车辆运行过程中的状态参数信息,借助于移动通信技术和计算机通信网络传至监测中心,状态监测与故障预测服务子系统对这些参数进行分析,以达到对车辆运行状态实时监测与故障预测的目的。该系统可以及时发现汽车潜在的故障,并提供警示信息或技术服务,确保汽车具有良好的运行性能,从而防止车辆带"病"行驶,避免因车辆故障引起的交通堵塞和交通事故,有利于保障道路交通的畅通。  相似文献   

12.
车辆换道行为因其运行环境复杂,所涉及的交通因素众多,容易引起交通冲突,从而降低道路交通系统的安全性.对车辆换道行为的动态特性及其对车流运行的影响机理进行建模与研究,对提高交通系统的运行效率有重要意义.基于城市道路车辆换道行为的特征,改进了元胞自动机模型细化车辆换道过程;考虑驾驶员特性、车辆类型的影响,采用模糊推理理论描述驾驶员的换道决策,进而建立了城市道路驾驶员主观换道模型.通过将实测交通流数据与仿真输出数据进行对比,验证模型的有效性.结果表明,所建立的模型输出结果与实测数据的误差较小,说明模型具有一定的有效性.  相似文献   

13.
无信号控制平面交叉口交通冲突预测模型研究   总被引:2,自引:2,他引:0  
以无信号控制平面交叉口为研究对象,在交通流运行特征分析的基础上,用泊松分布描述车辆的到达特性。通过相关假定,指出机动车与机动车之间冲突发生的条件及冲突数的计算方法,认为平交口内车辆之间的冲突是按照一定概率同时进入交叉口的车辆相互干扰的结果。运用概率统计的相关理论计算出在车辆横穿交叉口的时间CT内,单进口道发生的冲突数,进而计算出单进口道的小时冲突数及整个交叉口的小时冲突数。建立了冲突预测模型,并利用实测数据对模型进行了验证。  相似文献   

14.
公交车辆运行微观交通仿真模型研究   总被引:1,自引:0,他引:1  
介绍了上海交通大学与吉林大学共同开发的微观交通仿真系统MTSS的体系结构;建立了公交网络描述模型、公交车辆产生模型、乘客需求模型、公交站点事件反应模型和公交车辆运行模型;以微观交通仿真系统MTSS为仿真平台构建了公交车辆运行微观仿真模型;对上海市斜土路非港湾式站点与华山路港湾式站点进行了实地数据调查,利用实测数据对建立的公交车辆运行微观交通仿真模型进行了验证,测量值与仿真值之间的误差在10%以内。验证结果表明,建立的公交车辆运行微观交通仿真模型可以较好的描述公交车辆的运行过程以及与其他交通流之间的相互影响关系。  相似文献   

15.
郝悦 《汽车实用技术》2022,47(4):158-161
在我国随着人民生活水平的提高,车辆保有量也在呈倍速增长,进而引起了大量的交通安全问题,其中由驾驶员操作不当引起的交通事故约占所有交通事故的75%。而汽车的智能化发展可以很好地解决此类交通安全问题。智能汽车的核心技术主要包括环境感知、行为决策及运动控制三方面。其中运动控制作为智能汽车核心技术之一,有着重要的研究意义。智能汽车的运动控制包括横向控制和纵向控制两部分,对汽车横、纵向运动控制中的多种方法进行了分析介绍,包括模型预测控制、模糊逻辑控制、神经网络的自适应滑膜控制、直接式控制和分层式控制;同时介绍了横纵向耦合实现运动控制的重要性,并分析了其研究现状;最后,对智能汽车运动控制的后续发展方向进行了展望,有助于智能汽车运动控制的进一步优化发展。  相似文献   

16.
高速公路施工区交通特性分析   总被引:11,自引:0,他引:11  
何小洲  过秀成  吴平  杨卫东 《公路》2005,(12):110-115
对高速公路施工区的控制区进行了划分,明确了施工区各控制区的主要功能及特征。施工区车辆运行特性表现为合流车辆会造成施工区交通流重分布、超车道车辆优先通行以及合流的强制性等。在大量交通调查的基础上,对施工区行车道、超车道、合流车道的车头时距分布,各控制区的地点车速的频率分布、空间分布.车道占有率以及车辆汇入特征进行了深入分析。  相似文献   

17.
为分析和解决城市交通拥挤问题并提高城市道路利用率提供可行的途径,提出了一种面向交通枢纽的车辆运行仿真方法,通过场景、道路与车辆的三维动态建模,实现交通枢纽交通状况的实时真实感仿真.首先,提出了基于道路关键点连接网络模型表示交通枢纽的通行道路.其次,基于粒子系统实现车辆的动态运行实时仿真,并采用基于空间剖分的车辆碰撞检测方法对车辆运动控制算法进行了优化.最终,通过对路段的动态观测和反馈机制实现车辆行驶路线的规划和调度.实验结果表明,本文提出的方法可以生动直观地呈现实际路面的交通状况,并且能以较为流畅的帧速率实现交通场景的动态仿真.  相似文献   

18.
孙超  寇越  田林 《交通科技》2020,(2):106-109
为探究城市道路行车轨迹与路侧之间的横向距离对车辆运行的影响,提高驾驶员行车安全,在某市滨海路进行汽车运行轨迹样本采集试验,使用AxleLight RLU11系列路侧交通数据采集系统分车道采集试验路段汽车运行轨迹样本,利用SPSS Statistics对试验路段不同车道车辆运行轨迹样本进行数据处理,绘制不同行车道运行车辆横向距离的累积频率曲线,计算得到汽车运行轨迹与路侧的横向距离D85,通过绘制行驶车辆距路侧的横向距离直方图,得到不同车道的车辆分布规律。结果显示,驾驶员大多数偏向选择在内侧车道运行。根据试验路段内外2条车道车辆横向距离和运行轨迹特性,可为城市道路交通安全设施的设置提供理论依据,以期提高城市道路交通运行安全。  相似文献   

19.
人非共板断面通过机动车与非机动车高差进行分离,减少机非碰撞的交通事故;避免非机动车对机动车通行的影响,但也不可避免地带来人非冲突予盾增加,非机动车频繁起伏,舒适性下降等问题;结合道路红线宽度、机动车、非机动车交通组织等因素,研究人非共板断面在路段及交叉口范围的交通模式,从而分析总结人非共板断面的适用范围.  相似文献   

20.
杨敏  王立超  王建 《中国公路学报》2022,35(11):204-217
科学、合理、拟人化的换道控制是实现自动驾驶车辆安全高效行驶的重要保障,已有研究主要考虑相邻车道速度差、换道间隙等要素对车辆换道控制的影响,并未考虑车辆频繁加减速导致乘车体验差而催生换道意图这一重要现象。针对该问题,设计以抗干扰能力为基础的自动驾驶车辆自适应换道调控方法,其调控过程主要包括:采用智能驾驶人模型控制自动驾驶车辆纵向驾驶行为,以减速频次为指标度量自动驾驶车辆的抗干扰能力,并将抗干扰能力引入到自动驾驶车辆换道决策过程中,模拟自动驾驶车辆因频繁加减速导致乘车体验差而产生换道意图的现象,在此基础上,提出车辆换道控制模型。然后,以智慧高速为背景,利用Netlogo构建多种自动驾驶车辆运行场景,测试所构建的自适应换道调控方法。研究结果表明:智能驾驶人模型的选用能够合理体现自动驾驶车辆换道行为对交通流的运行影响;相比于低密度车流(≤30 veh),在中高密度车流情况下(≥40 veh),自动驾驶车辆维持原有车道运行的能力较弱、换道频率较高,且过高[80次·(5 min)-1]或过低[10次·(5 min)-1]的抗干扰能力临界值会导致自动驾驶车辆运行速度降低至10 km·h-1,因此可以根据不同车流密度条件对自动驾驶车辆的最大抗干扰能力进行设置和调整,从而保证自动驾驶车辆的运行效率,这也从侧面证明了所提自适应换道调控方法的科学性与合理性。研究结果对于提高自动驾驶车辆换道控制的合理自主性具有重要意义,该结果进一步完善了自动驾驶车辆换道模型库,能够为自动驾驶自适应换道调控提供理论和技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号